Aerosol optical depth retrieval using Landsat 8 satellite imagery - Case study: City of Tamanrasset, Algeria

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:
Introduction

Atmospheric aerosols are a colloid of solid particles or liquid droplets suspended in the atmosphere. Their diameter is between 10-2 to 10-3 micrometers. They directly and indirectly affect the global climate by absorbing and scattering solar radiation, and they also have a serious impact on human health by emitting harmful substances. In addition, high concentrations of aerosols on a local scale due to natural or human activities have adverse effects on human health, including cancers, pulmonary inflammation, and cardiopulmonary mortality. Monitoring the temporal and spatial variability of high concentrations of aerosols requires regular measurement of their optical properties such as aerosol optical depth (AOD).

Materials & Methods

Algeria is a large country with little knowledge of the spatial and temporal diversity of AOD, and the low spatial resolution of existing products makes it very difficult to predict aerosols (airborne particles) at the local scale, especially in arid southern regions. As a result, AOD recovery with data with higher spatial resolution is crucial for determining air pollution and air quality information. Several AERONET stations have been installed in Algeria. The Tamanrasset_INM station has been selected based on its location and the availability of historical AOD data for the period (2015-2016).
In this study, Landsat-8 / OLI image from tile 192/44 was used for satellite images. To this end, 23 TOA-corrected L1G-level Landsat-8 / OLI cloudless scenes were downloaded from January 2015 to December 2016 in the study area. DN values ​​are converted to TOA reflections using the scaling factor coefficients in the OLI Landsat-8 metadata file. In this study, the minimum monthly reflectance technique was used to recover AOD in this area. As a result, LSR images were used in the recovery process in different months of 2015 and 2016. The process of selecting reference LSRs was initially based on the selection of clear, foggy / cloudless sky images. The selected images were then used to construct artificial images in which each pixel corresponds to the second lowest surface reflection of all selected monthly images to be the LSR pixel for the respective month. The AOD retrieval method developed in this study is based on a LUT, using the 6S radiative transfer model. The advantage of using the 6S model is its ability to estimate direct components and scattering using a limited number of inputs for each spectral band in the entire solar domain. The effect of the viewing angle is limited because Landsat data are usually obtained with a fixed viewing angle. Surface reflectance can be estimated from a pre-calculated LSR database. The accuracy of AOD recovery depends on the use of the appropriate aerosol model. A continental model was selected from the available aerosol models. Other atmospheric parameters such as ozone, carbon dioxide, carbon monoxide and water vapor are considered by default. The AOD values ​​used to make LUT are set as follows: 0.0, 0.05, 0.1, 1.5, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2 and 1.5. The zenith angles of the sun and the sensor range from 0 to 70 degrees with a step of 5 degrees and the range of azimuth angles from 0 to 180 degrees with a step of 12 degrees. Using these parameters, the radiative transfer equation was run in forward to obtain the TOA reflection. Different combinations of input and TOA output parameters are stored in LUT. AOD retrieval is based on a comparison between the TOAs estimated with the model and the observed items using the best fit approach. Using such an approach, the estimated AODs are simulated in accordance with those used in the production of TOAs, using a competency function that minimizes the distance.

Results & Discussion

In this study, the AODs recovered at 550 nm in a 5-by-5-pixel window around the AERONET site were averaged. The considered AERONET values ​​are the average of all measurements taken within ± 30 minutes of image acquisition time. Observation regression results (AOD from Landsat 8 images and AERONET stations) showed that the correlation coefficient is about 84%. This study shows a good fit of the model on the research data and shows the high capability of the model. This study showed a strong recovery of AOD against AERONET data of more than 70% at . The differences can be attributed to a limited number of points or hypotheses related to the aerosol model used in this study. The assumption of using a pre-calculated LSR does not limit the accuracy of this method because we have shown that in arid regions where the change in land cover in different months of the year is small, a pre-calculated LSR image can be representation used the share of surface reflection in the radiative transfer model throughout the month.

Conclusion

In this study, an AOD derived from a high-resolution satellite at an urban scale was produced in the city of Tamanrasset, Algeria. The developed method assumes that the change in land cover is minimal and the temporal change in LSR is not significant. A pre-calculated LSR image is created to show the surface reflection in the retrieval process. Based on the 6S radiative transfer model, an LUT was constructed to simulate the TOA reflection of the built-in LSRs and a set of geometric and atmospheric parameters. The retrieved AODs were compared with the AERONET ground data. The results show that this approach can achieve reasonable accuracy in AOD recovery, which reaches about 70.9% at . In addition, this approach is suitable for estimating AOD in urban areas compared to existing AOD products with low spatial resolution. The results of this study show a 4% improvement compared to the results of Omari et al. (2019). The results of this study showed that ignoring the monthly changes in LSR values leads to good results in AOD recovery.

Language:
Persian
Published:
Journal of of Geographical Data (SEPEHR), Volume:33 Issue: 129, 2024
Pages:
21 to 37
https://magiran.com/p2734142  
مقالات دیگری از این نویسنده (گان)