Intein Based Fusion Proteins: Great Tags for the Soluble Production and Convenient Purification of Recombinant Proteins

Message:
Article Type:
Review Article (دارای رتبه معتبر)
Abstract:
Background

The main problem in the recombinant protein expression in E. coli strains, especially for high-yield production, is the accumulation in un-folded and inactive inclusion bodies. A suitable solution is the direction into the soluble cytoplasmic products by solubilizing tags. The use of inteins with self-cleaving ability, in addition to increase the chance of soluble protein expression, facilitates their purification process. 

Evidence Acquisition:

 In this review article, papers related to the use of intein tags for soluble expression or protein purification were collected regardless the time limit. Available databases including Pubmed, google scholar, ScienceDirect, Web of Science, Scopus, and Embase was searched. The best condition for soluble expression or purification was focused in all articles.

Results

There are various intein tags commercially available in expression vectors that results in gaining our goal in facilitating the recombinant protein solubilization as well as its simple purification. It is enough to induce the self-cleavage property of the intein, which varies according to the type of intein used. In this way, the target protein is easily separated from the purification tag without the need to add protease enzymes such as enterokinase or treatment with various chemicals. The most common affinity tag in intein-based systems is Chitin Binding Domain attached to the chitin resin. 

Conclusions

In this review article, we introduced proteins or peptides which produced in fusion to intein tags and discussed about their expression condition and purification process in order to enhance the chance of soluble expression and intein cleavage in a single stage, respectively.

Language:
English
Published:
Iranian Journal of Biotechnology, Volume:22 Issue: 2, Spring 2024
Pages:
21 to 29
https://magiran.com/p2737582