Investigating X-ray diffraction and microstructure analysis of new high entropy alloys TiZrNbXX made by powder metallurgy method
This study investigates the use of three refractory metals, their names are titanium (Ti), niobium (Nb) and zirconium (Zr), in combination with iron (Fe), chromium (Cr) and vanadium (V) to produce high entropy bioalloys. . Three high entropy alloy compositions, namely TiZrNbCrV, TiZrNbFeCr and TiZrNbFeV, were made using mechanical alloying technique and powder metallurgy method. Investigation about alloys was done through X-ray diffraction analysis (XRD) and field emission scanning electron microscope (FE-SEM) studies. The present study has shown that gradual cooling after the sintering process leads to the creation of a small percentage of compact hexagonal phases (HCP) in each of the three investigated alloys. In addition, two of the investigated alloys showed the formation of intermetallic phases due to the same cooling process. The microstructure of manufactured alloys includes four regions for all alloys containing the main Body-centered cubic ) BCC(, partial HCP (and other phases), voids, and Nb-containing regions.