A Deep Learning-based Model for Fingerprint Verification

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Fingerprint verification has emerged as a cornerstone of personal identity authentication. This research introduces a deep learning-based framework for enhancing the accuracy of this critical process. By integrating a pre-trained Inception model with a custom-designed architecture, we propose a model that effectively extracts discriminative features from fingerprint images. To this end, the input fingerprint image is aligned to a base fingerprint through minutiae vector comparison. The aligned input fingerprint is then subtracted from the base fingerprint to generate a residual image. This residual image, along with the aligned input fingerprint and the base fingerprint, constitutes the three input channels for a pre-trained Inception model. Our main contribution lies in the alignment of fingerprint minutiae, followed by the construction of a color fingerprint representation. Moreover, we collected a dataset, including 200 fingerprint images corresponding to 20 persons, for fingerprint verification. The proposed method is evaluated on two distinct datasets, demonstrating its superiority over existing state-of-the-art techniques. With a verification accuracy of 99.40% on the public Hong Kong Dataset, our approach establishes a new benchmark in fingerprint verification. This research holds the potential for applications in various domains, including law enforcement, border control, and secure access systems.

Language:
English
Published:
Journal of Artificial Intelligence and Data Mining, Volume:12 Issue: 2, Spring 2024
Pages:
241 to 248
https://magiran.com/p2778039