جستجوی مقالات مرتبط با کلیدواژه "convolutional neural network" در نشریات گروه "برق"
تکرار جستجوی کلیدواژه «convolutional neural network» در نشریات گروه «فنی و مهندسی»-
شناسایی و ارزیابی لکوسیت ها برای ارزیابی کیفیت سیستم ایمنی انسان مهم است. با این حال، تجزیه و تحلیل اسمیر خون به تخصص پاتولوژیست بستگی دارد. روش دستی برای تجزیه و تحلیل و طبقه بندی گلوبولهای سفید ها پرهزینه و زمان بر است و می تواند منجر به خطا در تشخیص شود. اکثر روش های یادگیری عمیق از مدل های مبتنی بر CNN برای طبقه بندی گلبول های سفید استفاده می کنند. این مقاله استفاده از یک شبکه مبتنی بر ViT را برای طبقه بندی لکوسیت ها در نمونه خون مورد بحث قرار می دهد. مجموعه داده مورد استفاده در این مقاله شامل 352 تصویر با اندازه 320 در 240 است که از طریق روش هایی برای ایجاد یک مجموعه داده متعادل از 12444 تصویر داده افزایی شده است. سپس داده های افزایش یافته برای آموزش معماری مبتنی بر ViT برای طبقه بندی انواع مختلف گلبول های سفید مورد استفاده قرار گرفته است. دراولین مرحله از روش پیشنهادی، یک توکنایزر کانولوشن برای استخراج پچ تصاویر اعمال شده است. این پچ ها فلت شده و به عنوان ورودی برای ساختار مبتنی بر ViT برای شناسایی زیر کلاس ها در مرحله دوم استفاده شده اند. نتایج به دست آمده با استفاده از لوکوویت نشان می دهد صحت شبکه پیشنهادی 99.04 درصد است که نسبت به شبکه های پیشرفته برتری دارد.کلید واژگان: گلبول های سفید, طبقه بندی تصویر, یادگیری عمیق, شبکه عصبی کانولوشن, ترانسفورمر بیناییThe identification and evaluation of leukocytes are important to assess the quality of the human immune system; however, the analysis of blood smears depends on the pathologist’s expertise. The manual method for analyzing and classifying WBCs is costly and time-consuming and can result in errors in detection. Most deep learning methods use CNN-based models for white blood cell classification. This paper discusses the use of a ViT-based network, for the classification of leukocytes (WBCs) in a blood sample. The Dataset used in this paper consists of 352 images with a size of 320x240, which was augmented through techniques to create a balanced dataset of 12444 images. The augmented data was then used to train a ViT-based architecture to classify the different types of WBCs. As the first step of the proposed algorithm, a convolutional tokenizer has been applied for patch extraction of images. These patches have been flattened and have been used as input for a ViT-based structure to recognize the subclasses in the second step. The results obtained using Leukovit show that the accuracy of the proposed network is 99.04% which is outperforming the state-of-the-art networks.Keywords: White Blood Cells, Image Classification, Deep Learning, Convolutional Neural Network, Vision Transformer
-
نشریه دستاوردهای نوین در برق،کامپیوتر و فناوری، سال چهارم شماره 2 (پیاپی 11، تابستان 1403)، صص 23 -33
بیماری کووید-19 که باعث سندرم حاد تنفسی می شود، یک بیماری مسری و کشنده است که اثرات مخربی بر جامعه و زندگی انسان دارد و به طور قابل توجهی بر اقتصاد جهان تاثیر گذاشته است. حیاتی ترین گام در مبارزه با بیماری کووید-19 تشخیص سریع بیماران مبتلا است. تصاویر سی تی قفسه سینه و کیت های تشخیصی RT-PCR اغلب برای تشخیص بیماری استفاده می شوند. هر دو روش ذکر شده با برخی از مشکلات روبرو هستند، به این ترتیب در پژوهش های اخیر از مدل های یادگیری عمیق برای تشخیص بیماری کووید-19 استفاده شده است. مدل های یادگیری عمیق مدل هایی سریع و دقیق هستند که برای تشخیص این بیماری در نظر گرفته شده اند. روش پیشنهادی در این مقاله، استفاده از شبکه عصبی کانولوشن از پیش آموزش دیده برای تشخیص بیماری کووید-19 بر روی دیتاست سی تی اسکن SARS-COV-2 است. این دیتاست شامل1252 سی تی اسکن مثبت برای عفونت کووید-19 و 1230 سی تی اسکن برای بیماران غیر آلوده به عفونت کووید-19 می باشد. شبکه عصبی کانولوشن از پیش آموزش دیده InceptionResNetV2 در مقایسه با سایر شبکه های از پیش آموزش دیده به نتایج بهتری، از جمله صحت 97.59%، دقت 98.78%، بازیابی 96.41% و میانگین F1 %97.58 دست یافته است.
کلید واژگان: یادگیری انتقالی, بیماری کووید-19, تصاویر سی تی قفسه سینه, شبکه عصبی کانولوشن, یادگیری عمیقJournal of New Achievements in Electrical, Computer and Technology, Volume:4 Issue: 2, 2024, PP 23 -33Covid-19, which causes acute respiratory syndrome, is a contagious and fatal disease that has devastating effects on society and human life, and has significantly affected the world economy. The most critical step in the fight against Covid-19 is the rapid diagnosis of infected patients. Chest CT images and RT-PCR diagnostic kits are often used to diagnose the disease. Both mentioned methods face some problems, thus in recent research, deep learning models have been used to diagnose the disease of Covid-19. Deep learning models are fast and accurate models that are considered to diagnose this disease. The proposed method in this article is to use a pre-trained convolutional neural network to diagnose the disease of Covid-19 on the SARS-COV-2 CT scan dataset. This dataset includes 1252 CT scan images belonging to COVID-19 cases and 1230 CT scan images belonging to healthy cases. The pre-trained convolutional neural network InceptionResNetV2 has achieved better results compared to other pre-trained networks, including 97.59% accuracy, 98.78% precision, 96.41% recall and 97.58% F1-Score.
Keywords: Transfer Learning, Covid-19 Disease, Chest CT Scans, Convolutional Neural Network, Deep Learning -
Journal of Electrical and Computer Engineering Innovations, Volume:12 Issue: 2, Summer-Autumn 2024, PP 401 -408Background and ObjectivesRe-identifying individuals due to its capability to match a person across non-overlapping cameras is a significant application in computer vision. However, it presents a challenging task because of the large number of pedestrians with various poses and appearances appearing at different camera viewpoints. Consequently, various learning approaches have been employed to overcome these challenges. The use of methods that can strike an appropriate balance between speed and accuracy is also a key consideration in this research.MethodsSince one of the key challenges is reducing computational costs, the initial focus is on evaluating various methods. Subsequently, improvements to these methods have been made by adding components to networks that have low computational costs. The most significant of these modifications is the addition of an Image Re-Retrieval Layer (IRL) to the Backbone network to investigate changes in accuracy.ResultsGiven that increasing computational speed is a fundamental goal of this work, the use of MobileNetV2 architecture as the Backbone network has been considered. The IRL block has been designed for minimal impact on computational speed. By examining this component, specifically for the CUHK03 dataset, there was a 5% increase in mAP and a 3% increase in @Rank1. For the Market-1501 dataset, the improvement is partially evident. Comparisons with more complex architectures have shown a significant increase in computational speed in these methods.ConclusionReducing computational costs while increasing relative recognition accuracy are interdependent objectives. Depending on the specific context and priorities, one might emphasize one over the other when selecting an appropriate method. The changes applied in this research can lead to more optimal results in method selection, striking a balance between computational efficiency and recognition accuracy.Keywords: Person Re-Identification, Deep Learning, Convolutional Neural Network, Image Detection
-
An optimization algorithm based on training and learning is formed based on the process of training and learning in a class. A deep neural network is one of the types of feedforward neural networks whose connection pattern among its neurons is inspired by the visual cortex of animals' brain. The present study considers decreasing prediction error for the types of time series and the uncertainty in estimation parameters, improving the structure of the deep neural network and increasing response speed in the proposed neural network method; besides, the competitive performance and the collaboration among the neurons of deep neural network are also increased. Selected data is related to Qeshm weather (suitable weather conditions to study our purpose) prediction during 2016 onwards. In this study, for the purpose of analyzing the prediction issue of power consumption of domestic expenses in the indefinite and severe fluctuation mode, we decided to combine two methods of Long Short-Term Memory and Convolutional Neural Network. For the training of the deep network, the BP algorithm is used.Keywords: Optimization algorithm, time series, Estimation, Prediction, Convolutional Neural Network, Long Short-Term Memory
-
Fingerprint verification has emerged as a cornerstone of personal identity authentication. This research introduces a deep learning-based framework for enhancing the accuracy of this critical process. By integrating a pre-trained Inception model with a custom-designed architecture, we propose a model that effectively extracts discriminative features from fingerprint images. To this end, the input fingerprint image is aligned to a base fingerprint through minutiae vector comparison. The aligned input fingerprint is then subtracted from the base fingerprint to generate a residual image. This residual image, along with the aligned input fingerprint and the base fingerprint, constitutes the three input channels for a pre-trained Inception model. Our main contribution lies in the alignment of fingerprint minutiae, followed by the construction of a color fingerprint representation. Moreover, we collected a dataset, including 200 fingerprint images corresponding to 20 persons, for fingerprint verification. The proposed method is evaluated on two distinct datasets, demonstrating its superiority over existing state-of-the-art techniques. With a verification accuracy of 99.40% on the public Hong Kong Dataset, our approach establishes a new benchmark in fingerprint verification. This research holds the potential for applications in various domains, including law enforcement, border control, and secure access systems.
Keywords: Fingerprint, Verification, Deep Learning, Pretrained, Convolutional Neural Network -
Fungal infections, capable of establishing in various tissues and organs, are responsible for many human diseases that can lead to serious complications. The initial step in diagnosing fungal infections typically involves the examination of microscopic images. Direct microscopic examination using potassium hydroxide is commonly employed as a screening method for diagnosing superficial fungal infections. Although this type of examination is quicker than other diagnostic methods, the evaluation of a complete sample can be time-consuming. Moreover, the diagnostic accuracy of these methods may vary depending on the skill of the practitioner and does not guarantee full reliability. This paper introduces a novel approach for diagnosing fungal infections using a modified VGG19 deep learning architecture. The method incorporates two significant changes: replacing the Flatten layer with Global Average Pooling (GAP) to reduce feature count and model complexity, thereby enhancing the extraction of significant features from images. Additionally, a Dense layer with 1024 neurons is added post-GAP, enabling the model to better learn and integrate these features. The Defungi microscopic dataset was used for training and evaluating the model. The proposed method can identify fungal diseases with an accuracy of 97%, significantly outperforming the best existing method, which achieved an accuracy of 92.49%. This method not only significantly outperforms existing methods, but also, given its high accuracy, is valuable in the field of diagnosing fungal infections. This work demonstrates that the use of deep learning in diagnosing fungal diseases can lead to a substantial improvement in the quality of health services.
Keywords: Fungal Infections, Deep Learning, Convolutional Neural Network, VGG19 -
This paper provides a review of deep learning-based methods for fault diagnosis of electrical motors. Electrical motors are crucial components in various industrial applications, and their efficient operation is essential for maintaining productivity and minimizing downtime. Traditional fault diagnosis methods have limitations in accurately detecting and classifying motor faults. Deep learning, a subset of machine learning, has emerged as a promising approach for improving fault diagnosis accuracy. This review discusses various deep learning methods, such as convolutional neural networks, recurrent neural networks, autoencoders, transfer learning, and transformers that have been utilized for motor fault diagnosis. Additionally, it examines different datasets and features used in these methods, highlighting their advantages and limitations. The paper also discusses challenges and future research directions in this field, such as data augmentation, transfer learning, and interpretability of deep learning models. Based on the findings, it is concluded that deep learning-based technologies are replacing manual expert involvement as the new norms in this field. Besides, methods are getting more standard, and official benchmarks are being created. A summarized table is provided at the end of the paper and numerous methods have been reported.
Keywords: Fault Diagnosis, Deep Learning, Inter-Turn Fault Diagnosis, Bearing Fault Diagnosis, Convolutional Neural Network, Transfer Learning -
در سال های اخیر با گسترش و موفقیت شبکه های کانولوشنی، موضوع یادگیری عمیق بیش از پیش مورد توجه قرار گرفته است. از آنجا که شبکه های کانولوشنی شامل لایه های زیادی هستند، یادگیری بهینه لایه های شبکه از اهمیت بالایی برخوردار است. در این مقاله، مدل جدیدی به نام چهار-جریان، با هدف کمک به خطی کردن فضای داده از طریق تبدیل عدم تشابه بازنمایی ارایه و تاثیر این تبدیل روی طبقه بندهای استاندارد برای داده های مصنوعی و تصاویر سیفار-10 بررسی و دو مدل مبتنی بر پیش پردازش داده با تبدیل عدم تشابه بازنمایی و فیلترهای سوبل و آشکارساز لبه تحلیل شده است. مدل چهار-جریان به دلیل بالا رفتن تعداد پارامترهای مدل و به تبع آن ظرفیت شبکه میزان 2/3 درصد افزایش دقت داشته است و اضافه نمودن بازنمایی عدم تشابه در جایی که طبقه بند نتواند با ویژگی های اصلی، تفکیک پذیری بالایی انجام دهد، می تواند تا حدودی با افزودن ویژگی های خطی به تفکیک پذیری کلاس ها کمک کند.
کلید واژگان: سیستم کانولوشنی, فضای برداری عدم تشابه, ماتریس عدم تشابه بازنمایی, مرجع, یادگیری عمیقWith the expansion and success of convolutional networks, the topic of deep learning has attracted increasing attention in recent years; Since convolutional networks include many layers, optimal learning of network layers is of great importance. In this paper, a new model, called the 4-stream model, is presented with the aim of helping to linearize the data space using representational dissimilarity transformation, and the effects of this transformation on standard classifications for artificial data and Cifar10 images are investigated. Then, two models based on data preprocessing with dissimilarity transform representation and Sobel and Edge Detector filters are analyzed. The 4-stream model increased the accuracy by 3.2% due to the increase in the number of model parameters, and hence the capacity of the network. Besides, adding the dissimilarity representation wherever the classifier cannot perform a high-resolution classification by merely using the main features, can help to increase the discriminability of classes by adding linear features.
Keywords: convolutional neural network, deep learning, Dissimilarity Vector Space, prototype, Representational Dissimilarity Matrix -
در سال های اخیر شبکه های عصبی کانولوشنال به طور فزاینده ای در کاربردهای مختلف بینایی ماشین و به ویژه در شناسایی و طبقه بندی خودکار تصاویر مورد استفاده قرار گرفته اند. این نوع از شبکه های عصبی مصنوعی با شبیه سازی عملکرد قشر بینایی مغز قدرتمندترین ساختار را در تجزیه و تحلیل داده های بصری دارند. اما تنوع تصاویر دیجیتال و گوناگونی محتوی و ویژگی های آن ها ایجاب می کند تا برای دستیابی به کارایی بالاتر در هر مسیله ی طبقه بندی، شبکه های کانولوشنال به صورت اختصاصی طراحی و پارامترهای آن ها به دقت تنظیم شوند. در این راستا، در پژوهش حاضر ضرایبی بهینه برای فیلترهای لایه ی کانولوشن در شروع آموزش شبکه بکار رفته تا از این طریق دقت طبقه بندی در شبکه افزایش و زمان آموزش کاهش یابد. این کار با طراحی و بکارگیری مجموعه ای از فیلترهای تخصصی برای لایه ی کانولوشن در قالب یک بانک فیلتر و جایگذاری آن ها به جای فیلترهای تصادفی انجام پذیرفته و بر روی پایگاه داده ی تصاویر اعداد دست نویس MNIST ارزیابی شده است. آزمایشات ما بر روی شبکه ی کانولوشنال تک لایه با سه نوع فیلترگذاری (فیلترهای عدد ثابت، عدد تصادفی و بانک فیلتر) میانگین دقت طبقه بندی تصاویر اعداد دست نویس MNIST را در 50 بار آموزش شبکه به ترتیب 94/74، 47/86 و 89/91 درصد و برای شبکه ی کانولوشنال سه لایه به ترتیب 82/88، 16/96 و 14/99 درصد نشان دادند. این نتایج نشان می دهند که فیلترهای بکار رفته در مدل پیشنهادی در مقایسه با فیلترهای تصادفی ویژگی های موثرتری از تصاویر را استخراج نموده و با شروع آموزش شبکه از نقطه ی مناسبتر، بدون افزایش هزینه ی محاسباتی دقت طبقه بندی را افزایش داده اند. بنابراین می توان نتیجه گرفت که ضرایب اولیه ی فیلترهای لایه ی کانولوشن بر دقت طبقه بندی شبکه های کانولوشنال موثر است و با بکارگیری فیلترهای موثرتر در لایه ی کانولوشن می توان این شبکه ها را خاص مسیله ساخته و از این طریق کارآیی شبکه را افزایش داد.
کلید واژگان: شبکه های عصبی کانولوشنال, یادگیری عمیق, طبقه بندی تصاویر, اعداد دست نویسBackgroundIn recent years, convolutional neural networks (CNNs) have been increasingly used in various applications of machine vision. CNNs simulate the function of the brain's visual cortex and have a powerful structure for analyzing visual images. However, the diversity of digital images, their content, and their features necessitate that CNN networks are specially designed, and their parameters are carefully adjusted to achieve higher efficiency in any classification problem. In this regard, in many previous studies, researchers have attempted to increase the efficiency of the CNNs by setting their adjustable parameters more accurately.
New methodNew method In this study, we presented a novel initializing method for the kernels of the first convolutional layer of the CNN networks. We designed a filter bank with specialized kernels and used them in the first convolution layer of the proposed models. These kernels, compared to the random kernels in traditional CNNs, extract more effective features from the input images without increasing the computational cost of the network, and improve the classification accuracy by covering all the important characteristics.
ResultsThe dataset used in this paper was the MNIST database of handwritten digits. We examined the performance of CNN networks when three different types of kernels were used in their first convolution layer. The first group of kernels had constant coefficients; the second group had random coefficients, and finally, the kernels of the third group were specially designed to extract a wide range of image features. Our experiments on a single-layer CNN network with three types of kernels (constant numbers, random numbers, and filter-bank) showed the average classification accuracy of MNIST images in 50 times of network training to be 74.94%, 86.47%, and 91.89%, respectively, and for a three-layer CNN network, 88.82%, 96.16%, and 99.14%, respectively. Comparison with existing methods Compared to the kernels with randomized coefficients, the use of specialized kernels in the first convolution layer of the CNN networks has several important advantages: 1) They can be designed to extract all important features of the input images, 2) They can be designed more effectively based on the problem in hand, 3) They cause the training to start from a more appropriate point, and in this way, the speed of training and the classification accuracy of the network increase.
ConclusionThis study provides a novel method for initializing kernels in convolution layers of CNN networks to enhance their performance in image classification works. Our results show that compared to random kernels, the kernels used in the proposed models extract more effective features from the images at different frequencies and increase the classification accuracy by starting the training algorithm from a more appropriate point, without increasing the computational cost. Therefore, it can be concluded that the initial coefficients of the convolution layer kernels are effective on the classification accuracy of CNN networks, and by using more effective kernels in the convolution layers, these networks can be made specific to the problem and, in this way, increase the efficiency of the network.
Keywords: convolutional neural network, deep learning, image classification, handwritten digit -
Scientia Iranica, Volume:30 Issue: 6, Nov-Dec 2023, PP 2143 -2161The heating, ventilation, and air conditioning (HVAC) control system is responsible for the efficient building energy system. Indoor energy consumption patterns can be monitored and reduced intelligently. Occupancy information plays a vital role to save a reasonable amount of energy. Traditional energy monitoring and control systems can be improved with the installation of the occupancy monitoring system which will consist of a network of sensors and cameras. In this research work, we propose a new and revolutionary convolutional neural network (CNN) based on real-time camera occupancy detection and recognition techniques across different sorts of sensors that provide realistic low-cost energy-saving solutions with robust graphical processing units (GPUs). This occupancy information will decide the energy behaviour inside buildings. Decision-making tools can be used to select the appropriate occupancy detection and recognition alternative for indoor environment and energy monitoring and management. In this research work, we introduce and develop the "Fermatean fuzzy prioritized weighted average and geometric operator". These aggregation operators (AOs) are a modern approach to modelling complexities in decision-making. In the end, we give an algorithm for an intelligent decision support system (IDSS) using proposed AOs to compare our CNN based method with other existing sensors techniques.Keywords: Fermatean fuzzy numbers, Aggregation operators, Video Processing, Convolutional Neural Network, Human Recognition, Detection
-
Breast cancer is a disease of abnormal cell proliferation in the breast tissue organs. One method for diagnosing and screening breast cancer is mammography. However, the results of this mammography image have limitations because it has low contrast and high noise and contrast as non-coherence. This research segmented breast cancer images derived from Ultrasonography (USG) photo using a Convolutional Neural Network (CNN) using the U-Net architecture. Testing on the CNN model with the U-Net architecture results the highest Mean Intersection over Union (Mean IoU) value in the data scenario with a ratio of 70:30, 100 epochs, and a learning rate of 5x10-5, which is 77%, while the lowest Mean IoU in the data scenario with a ratio 90:10, 50 epochs, and a learning rate of 1x10-4 learning rate, which is 64.4%.
Keywords: Breast Cancer, Convolutional neural network, U-Net, Mean IoU -
The coronavirus disease or COVID-19, as a global disease, is an unprecedented health care crisis due to increasing mortality and its high rate of infection. Patients usually show significant complications in the respiratory system. This disease is caused by SARS-CoV-2. Decreasing the time of diagnosis is essential for reducing deaths and low spreading of the virus. Also, using the optimal tool in the pediatric setting and Intensive care unit (ICU) is required. Therefore, using lung ultrasound is recommended. It does not have any radiation and it has a lower cost. However, it makes noisy and low-quality data. In this paper, we propose a novel approach called Uniform Local Binary Pattern on Five intersecting Planes and convolutional neural Network (ULBPFP-Net) that overcomes the said limitation. We extract worthwhile features from five planes for feeding a network. Our experiments confirm the success of the ULBPFP-Net in COVID-19 diagnosis compared to the previous approaches.
Keywords: COVID-19, Convolutional Neural Network, ULBPFP-Net, Lung Ultrasound Images -
برای برقراری تعادل تولید - مصرف، طراحی یک روش که اطلاعات اولیه را برای بار مصرفی در ساعات آتی با سطح دقت و قابلیت اطمینان مطلوبی ضروری می باشد. مسیله ی پیش بینی بار با ظهور مفاهیم جدید در شبکه های برق و تجدید ساختار سیستم های قدرت روز به روز پیچیده تر می شود. این مقاله یک شبکه باقی مانده عصبی را برای پیش بینی با دقت بالای بارهای الکتریکی پیشنهاد می کند. در شبکه ی طراحی شده با ترکیب دو شبکه ی باقی مانده عمیق قدرتمند توانایی یادگیری ارتقا یافته و همچنین از مشکلاتی همچون بیش برازش و کاهش/افزایش گرادیان جلوگیری شده است. همچنین، برای یادگیری کامل مشخصات زمانی و مکانی، شبکه ی عصبی کانولوشنی (CNN) و واحد بازگشتی حافظه دار (GRU) ترکیب شده و در ساختار چندسطحی باقی مانده ادغام شده است. تحلیل ها فصلی و تحقیق بر روی چندین مورد مختلف با استفاده از داده های بار مصرفی واقعی در شهر شیراز، ایران موثر بودن روش را تایید می کند و برتری روش پیشنهاد از طریق مقایسه با روش های پیشین نشان داده شده است.
کلید واژگان: پیش بینی کوتاه مدت بار, شبکه ی عصبی باقی مانده عمیق چند سطحی, شبکه بازگشتی حافظه دار, شبکه ی عصبی کانولوشنیTo maintain supply-demand balance, it is crucial to design a method to provide prior knowledge on load consumption in look-ahead time with high level of accuracy and reliability. The load prediction problem is becoming more and more challenging due to emerging new concepts in the electrical grids and reconstruction of the power networks. This paper develops a residual neural network to predict the electrical loads with high level of accuracy. In the designed network with combining two powerful deep residual network, a new residual deep network is proposed to improve the learning ability as well as prevent problems like overfitting and gradient reduction/explosion. Furthermore, to fully understand the spatial-temporal features, convolutional neural network (CNN) and gated recurrent unit (GRU) are combined and integrated into the designed multi-level deep network. The seasonal analysis and investigating several cases using actual electrical load consumption in Shiraz, Iran verifies the effectiveness of the proposed method and higher accuracy of the proposed deep network in comparison with other methods demonstrate the superiority of the proposed method.
Keywords: Short-term load forecasting, multi-level residual deep neural network, gated recurrent network, convolutional neural network -
Human activity recognition (HAR) has the potential to significantly impact applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Because of the prevalence of wireless devices, the Wi-Fi-based approach has attracted a lot of attention among other existing methods such as sensor-based and vision-based HAR. Wi-Fi devices can be used to distinguish between daily activities such as "walking," "running," and "sleeping," which affect Wi-Fi signal propagation. This paper proposes a Deep Learning method for HAR tasks that makes use of channel state information (CSI). We convert the CSI data to RGB images and classify the activity recognition using a 2D-Convolutional Neural Network (CNN). We evaluate the performance of the proposed method on two publicly available datasets for CSI data. Our experiments show that converting data into RGB images improves performance and accuracy compared to our previous method by at least 5%.
Keywords: Activity Recognition, Channel State Information, Convolutional Neural Network, Deep Learning, WiFi -
Handwritten character recognition has occupied a substantial area due to its applications in several fields and is used widely in the modern world. Handwritten Arabic recognition is a major challenge because of the high similarity in its characters and its various writing styles. Deep learning algorithms have recently shown high performance in this area. The problem is that a deep learning algorithm requires large datasets for training. To overcome this problem, an efficient architecture is presented in this study, which comprises Hidden Markovian Model for character modeling, Convolutional Neural Network for feature extraction, and an intelligent network for recognition. The proposed network is modeled based on the dentate gyrus of the hippocampus of the brain. This part of the brain is responsible for identifying highly overlapping samples. The handwritten Arabic alphabet is characterized by this high overlap. Modeling the functionality of the dentate gyrus can improve the accuracy of the handwritten Arabic characters. Experiments are done using IFN/ENIT, CMATERdb3.3.1 and, MADBase datasets. The proposed approach outperformed recently published works using the same dataset. Although in all the experiments, a character error rate (CER) of less than 1.63 was obtained, the CMATERdb3.3.1 dataset resulted in a CER of 0.35. Compared with the convolutional neural network, the proposed network showed superiority in recognizing patterns with high noise.
Keywords: Handwritten Arabic recognition, Convolutional Neural Network, Hidden Markovian Model, Dentate Gyrus, Overlap -
Journal of Artificial Intelligence in Electrical Engineering, Volume:11 Issue: 42, Summer 2022, PP 48 -54Retinal blood vessels include arteries and veins and are usually next to each other. Blood vessels are used to classify the severity of the disease and are also used for guidance during surgery, as retinopathy is one of the dangerous diseases.Diabetic retinopathy can cause the formation of new vessels (neoangiogenesis). This condition causes low vision and even blindness. Therefore, a reliable method for diagnosing and classifying the vessel is needed in order to avoid these complications. Retinopathy is one of the hidden diseases that is usually not known. prevent the next possibility.There are several methods for diagnosis, the most common of which is the use of traditional methods based on manual feature extraction, which requires a lot of feature geometry and expertise, and is usually dependent on data.From this method, neural convolution is a reliable, efficient and reliable method for extracting features without manual intervention, which requires a lot of expertise, which also reduces the dependence on data.In this article, using convolutional neural network, diabetic retinopathy has been diagnosed with accuracy and sensitivity of 98.8% and 97.5%, respectively.The obtained results indicate that the proposed method is suitable for locating blood vessels automatically.Keywords: blood vessels, convolutional neural network, Localization, Retina
-
Deep learning methods use neural networks that try to discover patterns within the image without human intervention and to learn that. One of the most popular algorithms in this field is the convolutional neural network algorithm. This algorithm uses several layers to receive the input image and process it so that the class label can be found. These layers are mostly based on Neural Networks. This research aims to provide a model of neural-fuzzy, based on convolutional neural network algorithm. In this research, we use the positive advantages of deep learning methods and fuzzy inference systems and present a new model of their application to Classify authorized and unauthorized Persons. For this purpose, we designed new neural-fuzzy layers to pass the image through them and finally classify each image. The results of the implementation of the above model show the efficiency and success of this system.
Keywords: Deep learning, Convolutional Neural Network, fuzzy inference systems, Face Recognition -
اینترنت اشیاء، یک فناوری جدید است که این فناوری از طریق اینترنت با اشیاء پیرامون خود ارتباط برقرار می کند و باهدف سنجش و کنترل از راه دور استفاده می گردد. در زمینه امنیت شبکه اینترنت اشیاء (IoT)، شناسایی دقیق انواع حملات به این شبکه ها که توسط میزبان های زامبی تحت کنترل مهاجم راه اندازی می شوند، اهمیت زیادی دارد. برای کاهش این تهدیدات، به روش های جدیدی نیاز است تا حملاتی که دستگاه های IoT را به خطر انداخته است، در کم ترین زمان ممکن شناسایی و از زیان های ناشی از حملات جلوگیری کنند. در این مقاله، یک شبکه عصبی جدید جهت بهبود تشخیص نفوذ به شبکه اینترنت اشیاء بر اساس شبکه عصبی کانولوشنال ALEXNET و الگوریتم بهینه سازی میگوی آشوبی به نام (MONANET) پیشنهاد شده است. در شبکه ی MONANET به منظور بهبود دقت در تشخیص نفوذ به شبکه ی IOT و عدم نیاز به تنظیم دستی پارامترها، فراپارامترهای شبکه عصبی با استفاده از الگوریتم میگوی آشوبی به صورت پویا انتخاب می شوند. مقدار تابع تلفات مجموعه اعتبارسنجی که از اولین آموزش مدل شبکه عصبی با استفاده از مجموعه داده Danmini doorbell به دست می آید، به عنوان مقدار تناسب CKH در نظر گرفته می شود. عملکرد جامع شبکه ی پیشنهادی و الگوریتم های GRU، ANN، SVM،LSTM ،FNN ،R-CNN وAPSO-CNN در پنج شاخص ارزیابی و در 12 اجرای مستقل مقایسه شده اند. نتایج به دست آمده نشان دهنده بهبود تشخیص نفوذ به شبکه اینترنت اشیاء است. الگوریتم پیشنهادی توانسته است بادقت 89.99 % حملات به شبکه اینترنت اشیاء را تشخیص دهد. نتایج تجربی برتری روش پیشنهادی را نسبت به سایر روش های مرز دانش از نظر بهبود دقت طبقه بندی نشان می دهد.کلید واژگان: شبکه ی MONANET, شبکه ی عصبی کانولوشن, شبکه ی ALEXNET, امنیت شبکه اینترنت اشیا, الگوریتم کریل کیاتیکی (CKHA), تشخیص حملهThe Internet of Things is a new technology that communicates with the surrounding objects through the Internet and is used for the purpose of remote measurement and control. In the field of Internet of Things (IoT) network security, it is very important to accurately identify the types of attacks on these networks that are launched by zombie hosts under the control of the attacker. In this article, a new neural network is proposed to improve the detection of intrusion into the Internet of Things network based on the ALEXNET convolutional neural network and chaotic krill optimization algorithm (MONANET). In the MONANET network, in order to improve the accuracy in detecting intrusion into the IoT network and not need to manually adjust the parameters, the hyperparameters of the neural network are dynamically selected using the chaotic krill algorithm. The value of the loss function of the validation set obtained from the first training of the neural network model using the Danmini doorbell dataset is considered as the CKH fitness value. The comprehensive performance of the proposed network and GRU, ANN, SVM, LSTM, R-CNN, and APSO-CNN algorithms have been compared in five evaluation indices and 12 times independent experiments. The obtained results show the improvement of intrusion detection to the Internet of Things network. The proposed algorithm has been able to accurately detect %99.89 attacks on the Internet of Things network. The experimental results show the superiority of the proposed method over other knowledge boundary methods in terms of improving classification accuracy.Keywords: MONANET network, Convolutional neural network, Alexnet network, IoT Network Security, Chaotic Krill Herd (CKHA), Attack Detection
-
امروزه ویروس کرونای جدید به یک اپیدمی بزرگ جهانی تبدیل شده است. روزانه درصد بالایی از جمعیت کل جهان به این ویروس مبتلا می شوند و درصد چشمگیری در اثر ابتلا جان خود را از دست می دهند. با توجه به ماهیت واگیرداری شدید این ویروس، تشخیص، درمان و قرنطینه به موقع امری ضروری تلقی می شود. در این مقاله یک روش خودکار برای تشخیص کووید-19 از تصاویر اشعه ایکس قفسه سینه براساس شبکه های یادگیری عمیق ارایه شده است. برای شبکه یادگیری عمیق پیشنهادی در این کار از ترکیب شبکه های کانولوشنال با توابع فعال سازی فازی نوع 2 به منظور مواجهه بهتر با نویز استفاده شده است. همچنین برای افزایش دادگان، شبکه های مولد تخاصمی در این پژوهش به کار گرفته شده اند. صحت نهایی حاصل شده برای طبقه بندی سناریوی اول (سالم و کووید-19) و سناریوی دوم (سالم، پنومونیا و کووید-19) به ترتیب حدود 99 و 95 درصد است. علاوه بر این، نتایج روش پیشنهادی ازنظر معیارهای صحت، حساسیت و اختصاصیت در مقایسه با پژوهش های اخیر امیدوارکننده اند؛ به طوری که برای طبقه بندی سناریوی اول به ترتیب دارای حساسیت و اختصاصیت 100 و 99 درصد است. روش پیشنهادی با راه یابی به حوزه کاربردی می تواند به عنوان دستیار پزشک در طول درمان بیماران استفاده شود.
کلید واژگان: covid-19, مجموعه های فازی نوع 2, CNN, تصاویر X-Ray قفسه سینهToday, the new coronavirus (Covid-19) has become a major global epidemic. Every day, a large proportion of the world's population is infected with the Covid-19 virus, and a significant proportion of those infected dies as a result of this virus. Because of the virus's infectious nature, prompt diagnosis, treatment, and quarantine are considered critical. In this paper, an automated method for detecting Covid-19 from chest X-ray images based on deep learning networks is presented. For the proposed deep learning network, a combination of convolutional neural networks with type-2 fuzzy activation function is used to deal with noise and uncertainty. In this study, Generative Adversarial Networks (GANs) were also used for data augmentation. Furthermore, the proposed network is resistant to Gaussian noise up to 10 dB. The final accuracy for the classification of the first scenario (healthy and Covid-19) and the second scenario (healthy, Pneumonia and Covid-19) is about 99% and 95%, respectively. In addition, the results of the proposed method in terms of accuracy, precision, sensitivity, and specificity in comparison with recent research are promising. For example, the proposed method for classifying the first scenario has 100% and 99% sensitivity and specificity, respectively. In the field of medical application, the proposed method can be used as a physician's assistant during patient treatment.
Keywords: ovid-19, Type 2 fuzzy sets, Convolutional neural network, Chest X-ray images -
Super resolution algorithms attempt to reconstruct high resolution images from low resolution images and it can be considered as a preprocessing step for object recognition and image classification. Various algorithms have been introduced for single-image super resolution, but these algorithms often face important challenges such as poorly matching the reconstructed image with the original image. This article introduces a preprocessing operation to improve the performance of the super resolution process. In the proposed method, the low-resolution images are enhanced before entering to the resolution change module. Calculating the brightness of the pixels in the image channels, creating the luminance map and removing atmospheric light, applying the transmittance map by using the luminance coefficients, and recovering the natural image in all three-color channels are the above preprocessing steps. The proposed method succeeded in increasing the PSNR parameter by 4.35%, 10.62%, and 8.31%, as well as 0.23%, 3.10%, and 7.91% of the SSIM parameter for Set5, Set14, and BSD100 benchmark datasets compared to its closest state-of-the-art methods.
Keywords: Single Image Super Resolution, Natural Images, Luminance Map, GAN, Convolutional Neural Network
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.