Evaluating the environmental risk of oil and gas pipeline routes using the Fuzzy Inference System method

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

 Oil and gas pipeline projects face a wide range of safety and security risk factors globally, especially in oil and gas-producing countries that have unsafe environments and poor safety records. Inadequate information about the causes of pipeline failures and poor knowledge about safety and security hinder efforts to reduce such risks. Today, pipelines are widely used to transport oil and gas over long distances; Therefore, their risk assessment can help to identify related risks and take necessary measures to eliminate or reduce the resulting consequences. By reviewing the previous studies, it was found that the goal of the researchers was often to investigate the possibility and consequence of quantitative risk assessment in pipelines, while these parameters are based on the physical characteristics of pipelines and alone cannot cover all aspects of risk along the path of oil and gas pipelines. to cover At the same time, paying attention to the general Feild of the pipeline in an oil region and the uses that include these feild are very important from the environmental, sustainable development, and crisis management aspects. Finally, it seems that not paying attention to this aspect of the goal is one of the distinguishing features of this study compared to other studies. The main goal of this research is to implement a new approach to assess the riskiness of the overall Feild of pipelines on environmental resources around the Maroon oil region.

Materials and Methods

 In this research, first, the study model of pipeline risk (from the point of view of consequences after the event) was selected. In the next step, the factors affecting the riskiness of the pipeline (in case of various incidents such as fire, explosion, toxic gas leakage, etc.) were identified and quantified. Then, the initial risk zoning map of pipelines in the study area was modeled based on MATLAB software's Mamdani fuzzy inference system. In the final step, to validate the proposed model, the results and outputs of the pipeline risk zoning model based on the fuzzy inference system were compared with the general opinion of experts. Finally, the final risk zoning map of the region was prepared and combined with the route of existing pipelines in the area. became

Results and discussion

 Based on the risk zoning of the oil and gas pipeline route from the point of view of facilities/structures, this route mainly passes through areas with low and medium risk that have an area of 223.32 Km2, this area is equivalent to 18.4% of the total area of the oil field. However, about 1.45% of the oil field area includes areas with high risk. These areas are located in the southern parts of the Maroon oil field. According to the land use map, the use of these areas includes main roads, bridges, and power lines. The reason for the high risk in these areas is that in case of accidents related to oil and gas transmission lines, the consequences of these risks in these areas can be significant. The results of risk zoning of the pipeline route from the perspective of environmental factors show that the route of pipelines passes through areas with low, medium, and high risk. But with the difference that, compared to the zoning map of facilities and structures, the passage route is more in areas with medium to high risk. The area of these areas is equal to 750.25 Km2 and includes 61.83% of the total area of the oil area, the use of these areas is consistent with the network of waterways and flowing sand (sand hills). The final risk map shows the path of oil and gas transmission lines, which is the result of combining two environmental and technical criteria. In this map, after zoning the area in terms of low, high, medium, and high risks, the route of the pipelines was adapted to it. In the final map, the route of the current pipelines in the Maroon oil region shows a great adaptation to the areas with low and medium risk. Most of the pipelines' route corresponds to areas with low and medium risk. Finally, the adaptation of the current pipeline route in the region and risk zoning in the northern and central parts of the field showed that these areas show a low and medium level of risk. According to the results, the area of high-risk areas in the oil field is 17.55 Km2, equal to 1.4% of the total area of the Maroon oil field. The total length of oil field pipelines is 249.14 km, the total of 7 km of this route, which is equivalent to 2.8% of the total length of the lines, passes through high-risk areas. Most of this route is located in the south and southeast part of the oil field.

Conclusion

 The results of this research show that the method of expert systems, artificial intelligence, and remote sensing can to a large extent overcome the shortcomings of the lack of zoning maps of general risk from the route of oil and gas pipelines in a vast oil area. The relationship between input and output information in the proposed fuzzy inference system was described as linguistic variables by applying expert opinion, which is more flexible and accurate compared to the classical model. Finally, based on the results of this study, the southern parts of the Maroon oil field are of high risk due to the existing pipeline route. This route is approximately 7 km long, i.e. 2.8% of the entire pipeline route. Finally, considering the above, it can be said that the above-mentioned method is effective in better decision-making by experts, because achieving a general view of the level of risk in different areas, in adopting strategies for prevention, evaluation, and correction of the area, is useful. has a lack of need for field studies, as well as reducing the burden of costs related to it, as well as saving time, are among the most important parameters that will make the research of researchers easier.

Language:
Persian
Published:
Journal of of Geographical Data (SEPEHR), Volume:33 Issue: 131, 2024
Pages:
23 to 41
https://magiran.com/p2803622