فهرست مطالب

مجله سلول و بافت
سال چهاردهم شماره 1 (بهار 1402)

  • تاریخ انتشار: 1402/05/04
  • تعداد عناوین: 6
|
  • مهدی خدایی مطلق صفحات 1-16
    هدف

    استرس اکسیداتیو عدم تعادل بین اکسیدانت ها و آنتی اکسیدانت ها در سطح سلولی است که منجر به ناباروری در مردان می ‫شود. چندین دهه است که گونه های واکنشی اکسیژن به‫عنوان عامل مخرب و آسیب رسان به سلول ها و بافت ها شناخته شده است، سلول ها برای کنترل فعالیت های فیزیولوژیک خود مقادیر کم و کنترل شده ROS را تولید می کنند در شرایط طبیعی، ROS تولید شده در مایع منی، به‫طور پیوسته توسط آنتی اکسیدانت های مایع منی غیرفعال می شود، زنجیره های اسید چرب غیراشباع در غشای پلاسمایی اسپرم نسبت به شرایط استرس اکسیداتیو آسیب پذیر است  و بدین ترتیب اسپرماتوزوآ برای غلبه بر شرایط استرس اکسیداتیو به سیستم های آنتی ا کسیدانی خارج سلولی وابسته است. یکی دیگر از دلایل ایجاد شرایط استرس اکسیداتیو برای اسپرماتوزوآ، علاوه بر پایین بودن سطح آنتی اکسیدانت ها در مایع منی، تولید بیش از حد ROS توسط اسپرماتوزوآ با مورفولوژی غیرطبیعی است  بنابراین یکی از دلایل ایجاد شرایط استرس اکسیداتیو در مایع منی ناشی از عدم تعادل بین تولید ROS و غیرفعال شدن آن توسط آنتی اکسیدانت‫ها است. قرار گرفتن در معرض غلظت های بالای ROS باعث اختلال در غشاء میتوکندری، غشای پلاسمایی و همچنین قطعه قطعه شدن کروموزومی می شود که این امر باعث کاهش تحرک و زنده ماندن اسپرم می شود. افزایش تشکیل ROS با کاهش تحرک اسپرم همراه است. این احتمال وجود دارد که افزایش تولید ROS در نهایت سبب کاهش فسفوریلاسیون پروتیین های آکسونمی و عدم تحرک اسپرم شود. این‫حالت منجر به کاهش سیالیت غشاء که به نوبه خود برای ادغام اسپرم- اووسیت لازم است، نیز می شود. استفاده از آنتی اکسیدانت هایی مانند  سیلیمارین می تواند مانع اثرات تنش اکسیداتیو شود. خار مریم معروف ترین نام رایج انگلیسی این گونه است و نام های دیگر عبارتند از: خار مریم، خار مریم، خار مریم، خار مریم، خار بانو، تاج مسیح، خار زهره، خار شفا، خار مریم، برگ خوک، خار شاهی، شیر مار، خار خار و کنگر وحشی. گیاه دارویی خار مریم در طب سنتی چین و اکثر کشورهای اروپایی به‫طور گستردهای در درمان اختلالات کبدی و صفراوی استفاده می‫شود. عصاره بذر این گیاه دارویی که به‫نام سیلیمارین معروف است کبد را در برابر انواع مسمومیت ها محافظت می‫نماید. سیلیمارین شامل مجموعه ای از فلاونوییدها و دیگر ترکیبات متعدد با خواص آنتی اکسیدانتی، ضدالتهابی و افزایش دهنده گلوتاتیون سلولی است از جمله ترکیبات فلاونوییدی مختلف موجود در گیاه خار مریم یا مارتیغال (Silybum marianum)، سیلی بین، سیلی کریستین و سیلی دیانین است که در مجموع سیلیمارین نامیده می‫شوند. در بسیاری از موارد، خاصیت آنتی اکسیدانتی سیلیمارین مسیول اقدامات محافظتی آن است. آپوپتوزیس ناشی از استرس اکسیداتیو در اسپرم ها ممکن است منجر به ناباروری شود. آلاینده های زیست محیطی و فلزات سنگین از طریق القای استرس اکسیداتیو بر سیستم تولید مثل و فراسنجه‫های اسپرم اثرات مضر ایجاد می کنند. سیلیمارین، به‫عنوان یک آنتی اکسیدانت قوی، قادر به جلوگیری از استرس اکسیداتیو است. سیلیمارین با خاصیت آنتی اکسیدانتی خود می تواند اثرات مضر ترکیباتی مانند؛ آلومینیوم، کادمیوم، لیتیوم، نیکل، بنزوپیرن، داکسی روبیسین، تتراکربن کلرید، نیکوتین، متوترکسات، آرسینیک و استات سرب را تا حدود زیادی خنثی کند و فراسنجه های آسیب دیده اسپرم ناشی از ترکیبات مذکور را بهبود دهد. همچنین سیلیمارین در کاهش اثرات زیان آور واریکوسل و پرتودرمانی بر فراسنجه های اسپرم موثر است.

    کلیدواژگان: سیلیمارین، اسپرم، آنتی اکسیدانت، خار مریم
  • شبنم جلیلی، علی اکبر احسانپور صفحات 17-32
    هدف

    از آن جهت که تنش شوری سبب تجمع گونه های فعال اکسیژن که منجر به تنش اکسیداتیو و مانع رشد و عملکرد گیاه می شود در این مطالعه به بررسی عملکرد ملاتونین به‫عنوان یک مولکول آنتی اکسیدانت بسیار قوی در پاکسازی انواع گونه های فعال اکسیژن و درنتیجه فعال شدن سیستم دفاعی گیاه در برابر تنش شوری پرداختیم.

    مواد و روش ها

    در این مطالعه پس از جوانه زنی بذرهای یونجه به محیط کشت MS که حاوی غلظت‫های  0، 1/0، 10 و 15 میکرومولار ملاتونین و غلظت‫های 0، 150 و 200 میلی مولار نمک منتقل شد. پس از 10 روز رشد ظرفیت آنتی اکسیدانتی کل، میزان فعالیت آنزیم های کاتالاز، آسکوربات پراکسیداز، سوپراکسید دیسموتاز، گایاکول پراکسیداز و گلوتاتیون ردوکتاز، میزان آسکوربات و گلوتاتیون در ریشه یونجه اندازه گیری شد.

    نتایج

    تیمار ملاتونین سبب افزایش معنی‫دار و چشم‫گیر در میزان قدرت آنتی اکسیدانتی کل، میزان فعالیت آنزیم هایCAT،APX ، POD، SOD، GR و ترکیبات آنتی اکسیدانت در چرخه گلوتاتیون- آسکوربات شامل DHA، ASC/DHA، GSH و GSH/GSSG همراه با افزایش غلظت شوری شد. از طرف دیگر تنش شوری موجب افزایش ترکیبات اکسید شده شامل DHA و GSSG در ریشه یونجه شد.

    نتیجه گیری

    ملاتونین علاوه بر نقش مستقیم در پاکسازی رادیکال های آزاد موجب فعال سازی سیستم دفاعی آنتی اکسیدانتی ریشه یعنی آنزیم های آنتی اکسیدانت و نیز ترکیبات آنتی اکسیدانت در چرخه آسکوربات- گلوتاتیون گردید، که این امر سبب افزایش مقاومت در برابر آسیب‫های اکسیداتیو ناشی از تنش شوری در ریشه یونجه شد.

    کلیدواژگان: ملاتونین، تنش شوری آنتی اکسیدانتت، کشت بافت، یونجه
  • اسیل کامل محمد موسوی، احمدرضا بهرامی، امیر شکوه سلجوقی، مریم مقدم متین صفحات 33-49
    هدف

    سرطان کولورکتال (CRC)، دومین عامل مرگ و میر در دنیا محسوب می شود و نانوذرات ترانوستیک با قابلیت درمانی و تصویربرداری به صورت هم‫زمان به عنوان بسترهای درمانی و تشخیصی در نظر گرفته می شوند. 

    مواد و روش‫ها: 

    در این مطالعه، نانوذرات متخلخل مغناطیسی (SPION-MSNs) با یک طراحی ویژه، به منظور عدم آزادسازی داروی شیمی درمانی 5-FU در مجاورت سلول های سالم سنتز شده و توسط کنترل گرهای دریچه ای طلا، رهایش دارو مهار شد. در گام بعد، به‫کمک پلیمر دوسر عملکردی پلی اتیلن گلیکول (PEG) با هدف افزایش زیست‫سازگاری، سطح بیرونی نانوذرات پوشانده شده و نانوذرات غیر هدفمند سنتز شد. به علاوه، به منظور دستیابی به رویکرد درمانی فعال و تحویل انتخابی داروی 5-FU، سطح بیرونی نانوذرات مجهز به آپتامر EpCAM شد. در ادامه، خصوصیات فیزیکی و شیمیایی نانوذرات سنتز شده، ارزیابی شده و فعالیت ضدسرطانی آن ها در محیط برون تنی مورد بررسی قرار گرفت.

    نتایج

    SPION-MSNs ساختار کروی به‫ همراه توزیع یکنواخت را نشان دادند. داروی شیمی‫درمانی 5-FU با موفقیت داخل منافذ باز نانوذرات سیلیکا بارگذاری شد و نتایج نشان داد که رهایش داروی 5-FU از نانوذره، وابسته به pH می باشد. نانوذرات هدفمند با اندازه ی حدود nm 78 و بار سطحی منفی سنتز شدند. مطالعات برون تنی سمیت معنی‫دار نانوذرات هدفمند را در برابر سلول های بیان کننده ی گیرنده ی EpCAM نشان داد و این سمت بر روی سلول های CHO بسیار ناچیز بود. این نتایج حاکی از کارآیی موثر اتصال آپتامر EpCAM در هدف گیری اختصاصی سلول های سرطانی می باشد.

    نتیجه گیری

    نتایج حاصل از این مطالعه نشان داد که این نانوذرات هدفمند، می توانند به عنوان یک نانوبستر ترانوستیک امیدوارکننده جهت درمان CRC در نظر گرفته شوند.

    کلیدواژگان: سرطان کولورکتال، سامانه ی حمل دارو، کنترل رهایش دارو، درمان هدفمند، ترانوستیک، نانوذرات سیلیکای متخلخل مغناطیسی
  • آمنه اسدی، منیره چنیانی، مهرداد لاهوتی صفحات 50-65
    هدف

    نانوذرات به دلیل ویژگی های فیزیکوشیمیایی ویژه خود که آن ها را قادر می سازد به عنوان محرک رشد گیاه عمل کنند، نسبت به اشکال معمولی عنصر برتر می سازد. تحقیقات اخیر بر روی نانوذرات بیانگر هم اثرات مثبت و هم اثرات منفی این ذرات است. نانوذرات دی اکسیدتیتانیوم (TiO2 NPs) در مقادیر زیاد در سراسر جهان برای اهداف مختلف بررسی می شود. این پژوهش با هدف ارزیابی تاثیرنانوذرات دی اکسیدتیتانیوم بر برخی صفات فیزیولوژیکی و بیوشیمیایی و القای سیستم آنتی اکسیدانی دو گونه مرزنجوش مدیترانه ای (Origanum vulgare L.) و مرزنجوش اروپایی (Origanum majorana L.)، درقالب طرح کاملا تصادفی با سه تکرار صورت گرفت. 

    مواد و روش ها

    اندام هوایی گیاهان دو ماهه پرورش داده شده در شرایط گلخانه، با غلظت های 10، 60 و 120 میلی گرم درلیتر نانوذرات دی اکسیدتیتانیوم محلول پاشی شدند. برای گیاهان شاهد، تیمار با آب مقطر صورت گرفت. سنجش روند تغییرات رنگیزه های فتوسنتزی، میزان مالون دی آلدیید، پرولین و فعالیت آنزیم های آنتی اکسیدانی در نمونه های جمع آوری شده انجام شد.

    نتایج

    مقایسه میانگین داده ها نشان دادکه غظت 60 میلی گرم درلیتر نانوذرات دی اکسیدتیتانیوم، موجب بیشترین میزان کلروفیل a، کلروفیل کل و کاروتنوییدهای هر دو گونه مرزنجوش شد. ولی بیشترین میزان کلروفیل b مرزنجوش اروپایی، در تیمار 120 میلی گرم درلیتر نانوذرات مشاهده گردید. شایان ذکر است که تاثیر منفی غلظت120 میلی گرم درلیتر نانوذرات دی اکسیدتیتانیوم بر سیستم غشایی دو گونه از لحاظ آماری معنی دار و قابل توجه بود که می تواند اشاره به نشت الکترولیت ها داشته باشد. هر چند افزایش غلظت نانوذرات دی اکسیدتیتانیوم، موجب مقادیر پایین میزان مالون دی آلدیید گونه مدیترانه ای در مقایسه با گونه اروپایی شد؛ اما سطح پرولین مرزنجوش مدیترانه ای به شدت افزایش یافت. بیشترین میزان فعالیت اکثر آنزیم های آنتی اکسیدان (گایاکول پراکسیداز،آسکوربات پراکسیداز، پلی فنل اکسیداز، سوپراکسیددیسموتازوگلوتاتیون اس-ترانسفراز) نوع مدیترانه ای، در غلظت 60 میلی گرم درلیتر تیمار مشاهده شد؛ اما فعالیت کاتالاز گونه مدیترانه ای نسبت به گونه اروپایی خود به طور قابل توجهی پایین بود.

    نتیجه گیری

    مجموعه نتایج این تحقیق نشان می دهد که تیمار 60 میلی گرم درلیتر نانوذرات دی اکسیدتیتانیوم باعث بهبود ویژگی های فیزیولوژیکی گیاه دارویی مرزنجوش از جمله افزایش رنگیزه های فتوسنتزی و به دنبال آن سرعت فتوسنتز و افزایش زیست توده گیاه می شود. قابل ذکر است که سطوح بالاتر از غلظت بهینه نانوذرات دی اکسیدتیتانیوم می تواند منجر به افزایش سطوح گونه های کنشگر اکسیژن و انفجار اکسیداتیو شود که منجر به کاهش عملکرد گیاه می شود. بنابراین، پاسخ گیاه به نانوذرات به طور قابل توجهی به غلظت و زمان کاربرد، و همچنین اندازه، شکل و عملکرد سطحی ذرات وابسته است. در نهایت مرزنجوش مدیترانه ای به دلیل فعالیت بیشتر آنزیم های آنتی اکسیدانی در شرایط تیمار با نانوذرات دی اکسیدتیتانیوم به عنوان گونه گیاهی موفق تر معرفی می گردد.

    کلیدواژگان: آنزیم های آنتی اکسیدان، دی-اکسیدتیتانیوم، گیاه دارویی، مرزنجوش، نانوذره
  • رضا نجفی، اسدالله اسدی، صابر زهری، آرش عبدالملکی صفحات 66-79
    هدف

    مهندسی بافت به‫ روش هایی اطلاق می شود که مبتنی بر استفاده از داربست ها، سلول‫ها و مولکول های فعال بیولوژیکی برای تولید بافت های دارای عملکرد مشخص است. هدف آن قابلیت بازسازی، نگه‫داری و بهبود بافت آسیب دیده یا کل اندام است. هدف از این مطالعه تولید نانو داربست پلی کاپرولاکتان /کتیرا/سیلیمارین و بررسی زنده مانی سلول‫های PC12 بر روی داربست تحت تنش اکسیداتیو می باشد.

    مواد و روش‫ها: 

    به‫ منظور تهیه نانو داربست، محلول پلی کاپرولاکتان 7 درصد (حل شده در استیک اسید)، محلول کتیرا 7/0 درصد وزنی (‫حل شده در استیک اسید‫) ومحلول سیلیمارین با غلظت 9/0 درصد وزنی مخلوط شد، سپس توسط دستگاه الکتروریسی داربست تهیه شد. مورفولوژی داربست توسط میکروسکوپ الکترونی روبشی و ساختار شیمیایی داربست توسط طیف سنجی FTIR مورد ارزیابی قرار گرفت. برای بررسی خواص آنتی اکسیدانتی داربست از گلوگز 80 میلی‫گرم بر لیتر و H2O2 ،150 مایکرو‫لیتر استفاده شد.

    نتایج

    بررسی مورفولوژی و ساختار شیمیایی داربست، نشان دهنده تخلخل مناسب داربست پلی کاپرولاکتان /کتیرا و بارگذاری موفق سیلیمارین بر روی داربست  بود. ارزیابی خواص اکسیدانتی داربست بعد از گذشت 24 ساعت از کشت سلول‫های PC12 بر روی آن نشان دهنده افزایش زنده‫مانی سلول‫ها بر روی داربست و خواص آنتی اکسیدانتی مناسب داربست بود.

    نتیجه گیری

    نتایج حاصل از این پژوهش نشان داد که غنی سازی داربست پلی کاپرولاکتان/کتیرا با سیلیمارین باعث افزایش توان تکثیر و زنده مانی سلول‫های PC12  تحت تنش اکسیداتیو شد. از این رو این داربست می تواند کاندیدی مناسب برای مهندسی بافت در شرایطی با تنش های اکسیداتیو بالا باشد.

    کلیدواژگان: داربست، سیلیمارین، مهندسی بافت، کتیرا، الکتروریسی
  • زهرا شایگان فر، محمدحسین آبنوسی، جواد سرگلزائی صفحات 80-95
    هدف

    دی-2-اتیل هگزیل فتالات(DEHP) به‫عنوان نرم کننده پلاستیک در صنایع غذایی و پزشکی استفاده شده و انسان‫ها با روش‫های متفاوت مانند تزریقات پزشکی در معرض این آلاینده قرار می گیرند. قبلا اثر غلظت‫های مختلف این آلاینده بر توانایی حیات، تکثیر و تمایز سلول‫های بنیادی مزانشیم مغزاستخوان رت ویستار (BMSCs) بررسی شده است. در این پژوهش مکانیسم اثر DEHP بر ژن‫های دخیل در تمایز BMSCs به استیوبلاست بررسی شد.

    مواد و روش ها

    در این مطالعه ی تجربی  BMSCs در محیط استیوژنیک با غلظت‫های 0 و100 میکرومولار از DEHP  برای مدت 21 روز تیمار و از آزمون MTT جهت بررسی توانایی حیات و از آزمون آلیزارین رد، اندازه گیری فعالیت آلکالین فسفاتاز و تعیین غلظت کلسیم ماتریکس برای بررسی معدنی شدن استفاده شد. بیان ژن های دخیل در تمایز با تکنیک RT-PCR ارزیابی شد.

    نتایج

      آنالیز آماری نشان داد که توانایی زیستی نیز  با کاهش معنی‫دار (42 %) مواجه شد. همچنین کاهش تولید ماتریکس بر اساس کاهش میزان آلیزارین رد، غلظت کلسیم و فعالیت آنزیم آلکالین فسفاتاز نشان داد که تمایز BMSCs به استیوبلاست در حضور DEHP کاهش معنی‫دار داشته است.  ضمنا کاهش بیان ژن های ضروری مشاهده  شد.

    نتیجه گیری

      DEHP در مدت طولانی باعث کاهش معدنی ماتریکس تولید  شده توسط  سلول‫ها شده است و در نتیجه کاهش تمایز BMSCs به استیوبلاست می‫شود. از آن‫جا که DEHP در تهیه وسایل پزشکی و ظروف غذایی استفاده می‫شود، پیشنهاد می‫شود در مصرف این ترکیب محدودیت های قانونی اعمال شود.

    کلیدواژگان: تمایز به استئوبلاست بیان ژن سلول‫های بنیادی مزانشیم مغزاستخوان، دی-2-اتیل هگزیل فتالات، تمایز به استئوبلاست، کلاژن، بیان ژن‬‬‬‬‬
|
  • M Khodaei-Motlagh Pages 1-16
    Aim

    Oxidative stress is an imbalance between oxidants and antioxidants at the cellular level which leads to infertility in males. For several decades, reactive oxygen species have been known as destructive and damaging agents to cells and tissues. Cells produce small and controlled amounts of ROS to control their physiological activities. Under normal conditions, ROS produced in semen are continuously deactivated by antioxidants in semen, Unsaturated fatty acid chains in sperm plasma membrane are vulnerable to oxidative stress conditions, and thus spermatozoa depend on extracellular antioxidant systems to overcome oxidative stress conditions. Another reason for creating oxidative stress conditions for spermatozoa, in addition to the low level of antioxidants in semen, is excessive production of ROS by spermatozoa with abnormal morphology. so one of the reasons for the creation of oxidative stress in semen is due to the imbalance between ROS production and its inactivation by antioxidants. Exposure to high concentrations of ROS causes disruption of the mitochondrial membrane, plasma membrane, and also chromosome fragmentation, which reduces sperm motility and viability. Increased formation of ROS is associated with decreased sperm motility. There is a possibility that the increase in ROS production will ultimately cause a decrease in the phosphorylation of axonemic proteins and sperm motility. This condition leads to a decrease in fluidity of the membrane, which in turn is necessary for sperm-oocyte fusion. The use of antioxidants such as silymarin can prevent the effects of oxidative stress.Milk thistle is the most well-known English common name for this species and other names include Holy thistle, Mary thistle, St. Mary’s thistle, Marian thistle, Lady’s thistle, Christ’s crown, Venus thistle, Heal thistle, Variegated thistle, Pig leaves, Royal thistle, Snake milk, Sow thistle, and Wild artichoke. The milk thistle medicinal plant is widely used in the traditional medicine of China and most European countries in the treatment of liver and biliary disorders. The seed extract of this medicinal plant, which is known as silymarin, protects the liver against a variety of poisonings. Silymarin contains a collection of flavonoids and other compounds with antioxidant, anti-inflammatory and cellular glutathione-increasing properties. Among the various flavonoid compounds found in the Silybum marianum, are silybin, silychristian and silydianin, which are collectively called silymarin. In many cases, the antioxidant properties of Silymarin are considered to be responsible for its protective actions. Oxidative stress-induced apoptosis in spermatozoa may lead to male infertility. Environmental pollutants and heavy metals cause harmful effects on the reproductive system and sperm parameters through the induction of oxidative stress. Silymarin, as a potent antioxidant, is able to inhibit oxidative stress. Silymarin with its antioxidant properties can have reduced the effects of compounds such as; aluminum, cadmium, lithium, nickel, benzopyrene, doxycycline, tetracarbon chloride, nicotine, methotrexate, arsenic and lead acetate on the sperm. And improve the damaged sperm parameters resulting from the mentioned compounds. Silymarin is also effective in reducing the harmful effects of varicocele and radiation therapy on sperm parameters.

    Keywords: Silymarin, Sperm, Antioxidan, Silybum marianum
  • S. Jalili, AA. Ehsanpour Pages 17-32
    Aim

    Salinity stress is one of the most important environmental stress in the world and one of the important factors in reducing growth in many plants, especially in arid regions of the world. Salinity stress and increased sodium ion lead to the induction of oxidative stress and consequent cell death. Melatonin is a multiple function molecule spread in different plant and triggers several physiologic responses to different environmental stress. Exogenous application of melatonin to several plants can improve crop growth and development in response to many abiotic and biotic stresses with adjusting the antioxidant system of plants. Current studies reported that, the exogenous melatonin can increase plants' stress resistance by regulating both the enzymatic and non-enzymatic antioxidant defense process. In this study, the effect of melatonin on alfalfa roots under tissue culture condition was investigated. The aim of the present study was to investigate how melatonin regulated the antioxidant system and non-enzymatic antioxidants such as reduced glutathione and ascorbate under salt stress

    Materials and methods

    In this study, alfalfa seeds (Medicago sativa) of the Isfahani variety were used and we studied the effect of melatonin and salinity stress on the alfalfa root. In order to sterilize the seeds, they were placed in a 70% ethanol solution for one minute and then in a 20% sodium hypochlorite solution for 20 minutes. After disinfecting the seeds, seeds were placed in each culture dish containing MS (Murashige and Skoog) culture medium. After germination, alfalfa seeds were transferred to MS culture medium containing concentrations of 0, 0.1, 10, and 15 micromolar melatonin and concentrations of 0, 150 and 200 mM salt. After 10 days of growth, total antioxidant capacity, the activity level of catalase, ascorbate peroxidase, superoxide dismutase, guaiacol peroxidase, and glutathione reductase, ascorbate and glutathione levels in alfalfa roots were measured.

    Results

    Also, in the salinity stress, melatonin treatment significantly increased the total antioxidant power, while no significant difference was observed between different concentrations of melatonin, 0.1µM melatonin 82 درصد and 62 درصد raised antioxidant activity under 150 and 200 mM NaCl, so melatonin can reduce the levels of reactive oxygen species by scavenging of them through antioxidant enzyme or non- antioxidant system. Based on the results Melatonin treatment caused a significant increase in antioxidant power, the activity of CAT, APX, POD, SOD, GR enzymes, and antioxidant compounds in the glutathione-ascorbate cycle including DHA, ASC/DHA, GSH, and GSH/GSSG. along with increasing salinity concentration. On the other hand, salt stress increased oxidized compounds including DHA and GSSG in alfalfa roots. The data were carried out by two-way analysis of variance (ANOVA), followed by Duncan’s multiple range tests.

    Conclusion

    In addition to its direct role in clearing free radicals, melatonin activates the antioxidant defense system of the root, i.e. both antioxidant enzymes and antioxidant compounds in the ascorbate-glutathione cycle, which increases the resistance to damage oxidative effects caused by salinity stress in alfalfa root. These findings proposed that exogenous melatonin utilization dramatically activated ROS scavenging systems including enzymatic and nonenzymatic antioxidants to keep a relatively low amount of ROS and increased the tolerance of alfalfa root against salinity stress.

    Keywords: Melatonin, Salt Stress Antioxidant, tissue culture, Medicago sativa
  • A .Kamel Mohammad Al-Mosawi, AR. Bahrami, A .Shokooh Saljooghi, M .Moghadam Matin Pages 33-49
    Aim

    Cancer is a global concern and colorectal cancer (CRC( accounts for the second most common cause of cancer related death in the world. Nanotechnology could enhance the effectiveness of chemotherapy as a common therapeutic approach through development of smart nanoparticles (NPs). In this context, theranostic nanoparticles with both imaging and therapeutic potentials are considered as promising platforms in diagnosis and treatment of advanced cancers.

    Materials & Methods

    Here, we designed and synthesized magnetic mesoporous silica nanoparticles (SPION-MSNs) in which release of 5-fluorouracil (5-FU) at physiological conditions was inhibited with pH-responsive gold gatekeepers. Heterofunctional polyethylene glycol (PEG) polymer was then conjugated onto the outer surface of nanoparticles and non-targeted nanoparticles were successfully synthesized. In order to achieve active and specific targeting, non-targeted nanoparticles were armed with an epithelial cell adhesion molecule (EpCAM) aptamer (Apt) for selective drug delivery of 5-FU to colorectal cancer cells. Finally, the physicochemical properties of NPs including functional groups, surface charge and their size were fully characterized with Fourier transform infrared (FTIR) spectra and dynamic light scattering (DLS) in each step. Moreover, morphology and homogeneity of SPION-MSNs were evaluated using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM). The cumulative release of 5-FU from nanoparticles was compared in buffer solutions with two different pH values (pH 7.4 and 5.4). In the final step, anti-cancer potential and cytotoxicity of free 5-FU, non-targeted, and targeted nanoparticles were assessed on human colorectal adenocarcinoma HT-29 cells and Chinese hamster ovary cells.

    Results

    Core-shell NPs, SPION-MSNs, were successfully prepared and the FTIR spectra showed specific peaks at the surface of nanoparticles. Obtained results from DLS measurements showed that the synthesized formulation had negative charges with size of 20 nm. Moreover, the morphology of SPION-MSNs indicated spherical shape with uniform distribution. After introducing amine groups, the surface charge was shift to positive and the two bands at 2965 and 1,560 cm−1 in the FT-IR spectrum were appeared and assigned to CH2-CH2 and N-H groups, respectively. The results indicated, 5-FU was encapsulated in the open pores of MSNs and the encapsulation efficiency (EE%) and drug loading capacity (LC%) were about 98% and 49%, respectively. The release of 5-FU from NPs showed pH-dependent manner, with an initial rapid release (within 6 h) followed by a sustained release for 96 h at pH 5.4. interestingly, the cumulative release of 5-FU was about 3.9% in neutral medium over 96 h. the results supported the Intelligent release of cargoes from theranostic nanoparticles. At the final step, targeted nanoparticles were successfully synthesized with a final size diameter of 78 nm and negative surface charge. In vitro results demonstrated higher cytotoxicity and anti-cancer property of targeted nanoparticles against EpCAM-positive HT-29 cells as compared to the EpCAM-negative CHO cells, confirming the effectiveness of aptamer as a targeting ligand.

    Conclusion

    These findings suggest that application of the targeted formulation can be considered as a promising theranostic platform for EpCAM-positive CRC cells. However, further experiments are required before it can be practiced in the clinic.

    Keywords: Colorectal cancer, Drug delivery system, Controlled release, Targeted therapy, theranostic, Magnetic mesoporous silica nanoparticles
  • A .Asadi, M .Cheniany, M. Lahouti Pages 50-65
    Aim

    Nanoparticles are superior to conventional elemental forms due to the novel physicochemical properties that enable them to act as plant growth promoters. Recent research on nanomaterials has been shown both positive and negative effects. Titanium dioxide nanoparticles (TiO2 NPs) are assayed worldwide in large quantities for various purposes. This study investigated the effect of TiO2 NPs on some physiological and biochemical traits and the induction of the antioxidant systems in Origanum vulgare L. and Origanum majorana L., in a completely randomized design with three repetitions.

    Material and Methods

    Surface-sterilized seeds were sown with 2 cm depth in each plastic pots filled with a 1: 1 mix of loamy soil and sand. Until reaching the appropriate physiological age, they were exposed to greenhouse conditions (16 h light/8 h dark photoperiod). Two-month-old plants were foliar sprayed with 10, 60, and 120 mg/L TiO2 NPs and harvested 14 days after the last treatment. Plants sprayed with distilled water were used as controls. Changes in the photosynthetic pigments (the content of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), biochemical properties (the levels of membrane stability index, malondialdehyde, and proline contents), and the activity of antioxidant enzymes (Guaiacol peroxidase, ascorbate peroxidase, polyphenol oxidase, superoxide dismutase, catalase, and glutathione s-transferase) were measured in the collected samples.

    Results

    The comparison of data means showed that the treatment of 60 mg/L TiO2 NPs caused the maximum amount of chlorophyll a, total chlorophyll, and carotenoids in both Origanum species. However, the highest content of chlorophyll b in O. majorana was observed in the treatment of 120 mg/L TiO2 NPs. It is worth mentioning that the negative effect of the concentration of 120 mg/L TiO2 NPs on the membrane system of two species is statistically significant and remarkable due to the leakage of electrolytes. Although the increase in the concentration of TiO2 NPs led to fewer levels of malondialdehyde in O. vulgare in comparison with O. majorana; this concentration was found to be effective to the high levels of proline in O. vulgare. Most of the antioxidant enzymes (Guaiacol peroxidase, ascorbate peroxidase, polyphenol oxidase, superoxide dismutase, and glutathione s-transferase) of O. vulgare showed their maximum activity at the concentration of 60 mg/L TiO2 NPs. However, the lower activity of catalase in O. vulgare, compared to O. majorana was remarkable.

    Conclusion

    The results of this research show that the treatment of 60 mg/L TiO2 NPs improves the physiological characteristics of the medicinal plant Origanum, including the increase of photosynthetic pigments, followed by the rate of photosynthesis and the increase of biomass. It is noteworthy that higher levels than the optimal concentrations of TiO2 NPs can lead to an increase in the levels of ROS and oxidative burst, which leads to a decrease in plant performance. Therefore, the plant response to nanoparticles depends significantly on the concentration and time of application, as well as the size, shape, and surface functionalization of the particles. Finally, O. vulgare is introduced as a more successful species due to the higher activity of antioxidant enzymes when treating TiO2 NPs.

    Keywords: Antioxidant enzymes, Medicinal plant, Nanoparticle, Origanum, Titanium dioxide
  • R .Najafi, A .Asadi, S .Zahri, A. Abdolmaleki Pages 66-79
    Aim

    Tissue engineering refers to methods that are based on the use of scaffolds, cells and biologically active molecules to produce tissues with specific functions. The purpose of tissue engineering is to build structures that can regenerate, maintain and improve damaged tissue or the whole organ. Today, by using tissue engineering methods, various natural and synthetic scaffolds have been designed that can be used for nerve grafts. The physical, chemical and biological properties of the scaffold must be similar to the extracellular matrix of the body in order to avoid adhesion, growth and support the differentiation of cells. An ideal neural scaffold should have biodegradability, biocompatibility and proper tensile strength. Recently, the use of polycaprolactan as a suitable biodegradable material has been evaluated in many fields of tissue engineering. Antioxidants are among the substances, which seem to be able to prevent neuronal death by reducing the amount of ROS. Flavonoids include many compounds that have various biological effects in the body. Silymarin (Silybum marianum) is a flavonoid that has many effects, including anti-cancer effects and antioxidant properties. Tragacanth is a known natural polymer that has excellent biological properties such as biodegradability, biocompatibility, antibacterial and wound healing ability. It is obtained from the stems and branches of the Asian species tragacanth. It has outstanding structural stability against heat and acidity. The aim of this study is to produce polycaprolactan/ tragacanth /silymarin nanoscaffolds and to investigate the viability of pc12 cells on the scaffold under oxidative stress. Considering that silymarin has antioxidant properties, the use of polycaprolactan/ tragacanth /silymarin nanoscaffolds can prevent neuropathy of nerve cells.

    Material and Methods

    Scaffolds used in this research were prepared using the electrophoretic method. For this purpose, an electrospinning machine was used, which is equipped with a rotary collector with a thickness of 70 mm and a width of 50 mm. In order to prepare a polycaprolactan/ tragacanth nanoscaffold and load silymarin on it, a 7% polycaprolactan solution (dissolved in acetic acid), 0.7% by weight tragacanth solution (dissolved in acetic acid) and 0.9% by weight silymarin solution were mixed by a magnetic stirrer for 20 minutes, and in order to make the solution uniform, sodium didecyl sulfate (SDS) with a concentration 1 percent by weight of the solvent was added to the solution and the suspension was homogenized for 20 minutes with an ultrasonic device, then the scaffold was prepared by an electrospinning device. . The nanofibers were collected in a period of 6 hours, the sample collection speed was 1 ml per hour, and the nanofiber samples were collected by rotating at 250 rpm. The distance between the injection needle and the scaffold is 12 cm and this process is done at a voltage of 15 kV. The morphology of the scaffold was evaluated by scanning electron microscope (SEM) and the chemical structure of the scaffold was evaluated by FTIR spectroscopy. To investigate the antioxidant properties of the scaffold, glucose 80 mg/L and H2O2, 150 macro L were used.

    Results

    Examining the morphology and chemical structure of the scaffold showed the proper porosity of the polycaprolactan/ tragacanth scaffold and the successful loading of silymarin on the scaffold. Evaluation of the oxidant properties of the scaffold after 24 hours of PC12 cell culture on it showed the increase in cell viability on the scaffold and the appropriate antioxidant properties of the scaffold.

    Conclusion

    The results of this research showed that the enrichment of polycaprolactan/ tragacanth scaffold with silymarin increased the proliferation and survival of PC12 cells under oxidative stress. Therefore, this scaffold can be a suitable candidate for tissue engineering in oxidative stress.

    Keywords: Scaffold, Silymarin, Tissue engineering, tragacanth, Electrospinning
  • Z .Shayeganfar, MH .Abnosi, J .Sargolzaei Pages 80-95
    Aim

    Di-2-ethylhexyl phthalate (DEHP) is used as plasticizer to produce flexible polyvinyl chloride (PVC) which is used in food and medical industries. Due to temperature change and contact with biological fluids and other liquids, DEHP leaches out from PVC. Humans get exposed to DEHP in different way including food consumption and medical utilities such as blood bags, blood transfusion tubes, syringes. At 2002, 120000 tons of DEHP has been produced in United States of America and this production was raised up to 230000 tons at 2006. In Iran, only in one of the industries called as Farabi petrochemical industries, 55000 tons of phthalate per year is produced. It has been reported that the DEHP concentration in human blood might reach to 52 to 55 µg/ml when blood is stored in polyvinyl chloride bags for two weeks. Previously, the effect of different concentration of DEHP on viability, proliferation and differentiation of rat bone marrow mesenchymal stem cells was investigated. In the present study, effect of 100 µM (39 µg/ml) of DEHP on the expression of genes related to osteogenic differentiation of rat bone marrow mesenchymal stem cells was investigated.

    Material and methods

    In this experimental study, rat bone marrow mesenchymal stem cells were extracted from Wistar rats and after 3rd passage the cells cultured was performed in osteogenic media in presence of 100 µM of DEHP for 21 days. The viability of the cells was studied using 3-[4, 5- dimethylthiazol-2yl]-2, 5-diphenyl-tetrazolium bromide (MTT) assay. In addition, the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was investigated using quantitative alizarin red test and calcium concentration determination. In addition, alkaline phosphatase enzyme activity as a marker of osteogenic differentiation was measured. Expression of the osteogenic related genes (osteonectin, SMAD1 ،BMP2 ،BMP7 and RUNX2) were studied using reverse transcriptase-PCR. Data was analyzed and the minimum level of significant was considered as p<0.05.

    Results

    Data analysis revealed, rat bone marrow mesenchymal stem cells viability reduced significantly (p<0.05) following treatment with 100 µM of DEHP when compared to control one. Also, we observed a significant (p<0.05) reduction in matrix production based on significant reduction in alizarin red concentration as well as calcium content and alkaline phosphatase enzyme activity. In addition, a significant (p<0.05) reduction in total protein also was observed in the samples extracted from BMSCs differentiated to osteoblasts in presence of DEHP. Meanwhile, a significant (p<0.05) down regulation of osteogenic related genes was confirmed while no change (p>0.05) was observed in the expression of GAPDH.

    Conclusion

    based on this study, long term exposure to DEHP caused reduction in matrix production which strongly showed the osteogenic differentiation of rat bone marrow mesenchymal stem cells is affected by low concentration of this environmental pollutant. As it was observed, the concentration used in this study was lower than the concentration of this pollutant in blood bags. Therefore, if a patient gets exposed to the biological or nonbiological fluids in a treatment procedure, large amount of DEHP would enter the blood circulation system. As DEHP is used in production of food containers and medical utilities such as blood tubing, blood bags, dialysis tubes in dialysis machines, we strongly suggest a legal restriction to be forced on the industrial which using this chemical as plasticizer.

    Keywords: bone marrow mesenchymal stem cells, Di-2-ethylhexylphthalate, Osteogenic differentiation, collagen, Gene expression