به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "classification" در نشریات گروه "محیط زیست"

تکرار جستجوی کلیدواژه «classification» در نشریات گروه «علوم پایه»
  • اکرم قربانی*، محمدجواد ادیبی نیا، عاطفه ناصری، حسن مسعودی

    هدف از این مطالعه تعیین کیفیت منابع آب شرب زیرزمینی شهرستان تربت جام و صالح آباد با استفاده از شاخص کیفی (WQI) و پهنه بندی آن ها می باشد. برای تعیین اندکس کیفیت منابع آب اختصاصا نتایج آزمایشات 9 پارامتر شامل: (PH، سختی، جامدات محلول، کلسیم، منیزیم، سدیم، نیترات، کلرور و سولفات) مورد بررسی گرفت. از تعداد 110 چاه چشمه و قنات منطقه نمونه برداری شده و به آزمایشگاه مرکزی ستاد شرکت آب و فاضلاب استان خراسان که دارای گواهینامه استاندارد 17025 آزمایشات شیمیایی آب می باشد ، انتقال داده شد و آزمایشات برابر آخرین ورژن استاندارد متد سال 2005 توسط دستگاه IC کرموماتوگراف اندازه گیری شد. درمرحله پایانی با مشخص شدن وضعیت کیفی چاه های آب شرب، پهنه بندی کیفی آن ها در نرم افزار ARC GIS10.2 انجام شد. نقشه های پهنه بندی کیفیت منابع آب نشان داد که اکثر منابع آب شهرستان تربت جام از نظرشاخص WQI در محدوده کیفیت آب عالی و خوب قرار گرفته اند. همچنین نتایج تکنیک های آماری (رگرسیون چندگانه) مشخص نمود پارامتر سدیم (Na) بیشترین ضریب اثرگذاری در تعیین شاخص WQI و پس آن سولفات، سختی کل، کلرور و جامدات محلول داشتند. بررسی سطح معنی داری کاربری اراضی با شاخص کیفی با آزمون کروسکال والیس نشان دهنده تفاوت معنی دار بین کاربری اراضی و شاخص کیفیت آب بود.

    کلید واژگان: آلودگی آب زیرزمینی, WQI, طبقه بندی, کروسکال والیس
    Akram Ghorbani *, Mohammadjavad Adibinia, Atefeh Naseri, Hasan Masoudi

    The purpose of this study is to determine the quality of underground drinking water sources in Torbat Jam and Saleh Abad cities using quality index (WQI) and their zoning. In order to determine the quality index of water resources, the results of testing 9 parameters including: (PH, hardness, dissolved solids, calcium, magnesium, sodium, nitrate, chlorine and sulfate) were studied. Samples were taken from 110 spring wells and aqueducts in the region and transferred to the central laboratory of Khorasan Water and Wastewater Company headquarters, which has a standard certificate of 17025 for water chemical tests and the experiments were measured according to the latest standard version of the method in 2005 by the IC chromatograph device. In the final stage, after determining the quality status of drinking water wells, their quality zoning was done in ARC GIS10.2 software. Zoning maps of water resources quality showed that most of the water resources of Torbat Jam city are in the range of excellent and good water quality in terms of WQI index. Also, the results of statistical techniques (multiple regression) showed that sodium (Na) parameter had the highest influence coefficient in determining the WQI index, followed by sulfate, total hardness, chlorine and dissolved solids. Investigating the significance level of land use with quality index by Kruskal-Wallis test showed a significant difference between land use and water quality index.

    Keywords: Groundwater Pollution, WQI, Classification, Kruskal Wallis
  • Mahdi Banaee *, Amir Zeidi, Caterina Faggio

    Computational toxicology is a rapidly growing field that utilizes artificial intelligence (AI) and machine learning (ML) to predict the toxicity of chemical compounds. Computational toxicology is an important tool for assessing the risks associated with the exposure of finfish and shellfish to environmental contaminants. By providing insights into the behavior and effects of these compounds, computational models can help to inform management decisions and protect the health of aquatic ecosystems and the humans who depend on them for food and recreation. In aqua-toxicology research, Quantitative Structure-Activity Relationship (QSAR) models are commonly used to establish the relationship between chemical structures and their aquatic toxicity. Various ML algorithms have been developed to construct QSAR models, including Random Forest (RF), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Bayesian networks (BNs), k-Nearest Neighbor (kNN), Probabilistic Neural Networks (PNNs), Naïve Bayes, and Decision Trees. Deep learning techniques, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have also been applied in computational toxicology to improve the accuracy of QSAR predictions. Moreover, data mining graphs, networks and graph kernels have been utilized to extract relevant features from chemical structures and improve predictive capabilities. In conclusion, the application of artificial intelligence and machine learning in the field of computational toxicology has immense potential to revolutionize aquatic toxicology research. Through the utilization of advanced algorithms and data analysis techniques, scientists can now better understand and predict the effects of various toxicants on aquatic organisms.

    Keywords: Predictive modeling, QSPR modeling, Data integration, analysis, Toxicity prediction, classification, Data mining, knowledge discovery
  • پروین باقری فر*، رضا بصیری، شهرام یوسفی خانقاه، حمیدرضا پورخباز
    زمینه و هدف

    فن آوری سنجش ازدور در دنیای پیشرفته امروزی به عنوان یکی از مهم ترین و عمده ترین منابع داده های مکانی و موضوعی قلمداد می شود. در این مقاله هدف مقایسه دو روش جهت آشکار سازی تغییرات جنگل با استفاده از تصاویر ماهواره لندست می باشد. بدین منظور از تصاویر سال 1369 سنجنده TM ماهواره لندست و هم چنین تصاویر سال 1390 سنجنده ETM+ این ماهواره استفاده شده است.

    روش بررسی

    در طبقه بندی تصاویر، از روش طبقه بندی نظارت شده و الگوریتم حداکثر احتمال و شبکه عصبی مصنوعی به شیوه پرسپترون چندلایه استفاده گردید.

    یافته ها

    بر اساس نتایج به دست آمده الگوریتم شبکه عصبی مصنوعی در مقایسه با  حداکثر احتمال صحت کلی و ضریب کاپای بالاتری در هر دو تصویر (TM و ETM+) نشان داده است. پس از طبقه بندی، نقشه های استخراج شده از تصاویر TM و ETM+ به منظور آشکارسازی تغییرات روی هم گذاری شدند و نقشه تغییرات به دست آمد.

    بحث و نتیجه گیری

    نتیجه نهایی تحقیق نشان می دهد که استفاده از داده های لندست همراه با داده های حاصل از آماربرداری قابلیت تهیه نقشه تغییرات جنگل را در منطقه موردمطالعه دارا می باشند.

    کلید واژگان: طبقه بندی, تصاویر لندست, سنجش ازدور, باغ ملک, خوزستان
    Parvin Bagherifar *, Reza Basiri, Shahram Yosefi Khaneghah, Hamidreza Pourkhabbaz
    Background and Objective

    Remote Sensing Technology is considered one of the most important sources of spatial and thematic data in the developed world of today. The objective of this work is a comparison of two different methods of change detection in forests using Landsat images. Therefore, sensor Landsat TM images of 1990 and 2011 (ETM+) satellite images have been used.

    Material and Methodology

    In the classification of images, the maximum likelihood algorithm, and artificial neural network to multilayer perceptron method were used.

    Findings

    Evaluated results showed that the algorithm approach, the maximum likelihood overall accuracy, and kappa coefficient maps classified in TM image, respectively, are 96.72 and 0.96 percent and image ETM+ 98.02 and 0.97 percent, and the method of artificial neural networks, overall accuracy and kappa coefficient map classified, TM image was 98.22 and 0.97% and ETM+ image was 98.34and 0.97 percent respectively. Following TM and ETM+ classification maps to detect the changes were marked and the map changes obtained.

    Discussion and conclusion

    The results of this study showed that using Landsat data along with data from have inventory capabilities of forest change mapping

    Keywords: Classification, Landsat images, Remote sensing, Baghmalek, Khuzestan
  • مهسا عبدلی لاکتاسرائی، مریم حقیقی خمامی*

    پارک های ملی و پناهگاه های حیات‌وحش از مهم ترین سرمایه های اکولوژیکی به شمار می روند. ازاین‌رو اطلاع از تغییرات کمی و کیفی کاربری اراضی آن ها نقش اساسی در کیفیت مدیریت این مناطق دارد. الگوریتم های متنوعی برای طبقه بندی تصاویر ماهواره ای در سنجش‌ازدور توسعه‌یافته‌اند، انتخاب الگوریتم مناسب طبقه بندی در دستیابی به نتایج صحیح نقش بسیار مهمی را ایفا می کند. در این تحقیق با مقایسه صحت طبقه بندی دو الگوریتم شبکه عصبی مصنوعی و ماشین بردار پشتیبان، الگوریتم دقیق‌تر تعیین و از آن برای بررسی روند تغییرات کاربری اراضی استفاده شد. تحقیق حاضر در پارک ملی بوجاق واقع در استان گیلان طی سال های 2000 تا 2017 با استفاده از تصاویر ماهواره‌ایETM+ و OLI لندست 7 و 8 انجام گرفت. نتایج نشان داد که الگوریتم ماشین بردار پشتیبان به ترتیب با دقت کل و ضریب کاپا، 42/86 و 83/0 برای سال 2000 و 65/90 و 88/0 برای سال 2017، در مقایسه با الگوریتم شبکه عصبی مصنوعی به ترتیب با دقت کل و ضریب کاپا، 71/83 و 80/0 برای سال 2000 و دقت کل و ضریب کاپا، 25/89 و 87/0 برای سال 2017، تصاویر ماهواره‌ای را بهتر طبقه بندی کرده است؛ بنابراین، از نقشه های کاربری اراضی حاصل از الگوریتم ماشین بردار پشتیبان جهت بررسی تغییرات کاربری استفاده شد. بررسی روند تغییرات کاربری اراضی با این روش مشخص کرد که در طی دوره بررسی‌ شده، مساحت کاربری های پیکره آبی، دریا، پوشش علفی و کشاورزی کاهش‌یافته است درحالی‌که کلاس کاربری های باتلاقی، درختی و بدون پوشش افزایش‌یافته است.

    کلید واژگان: سنجش ازدور, کاربری اراضی, ماشین بردار پشتیبان, شبکه عصبی مصنوعی, طبقه بندی, پارک ملی بوجاق
    Mahsa Abdoli Laktasaraei, Maryam Haghighi khomami *

    National parks and wildlife shelter are the most important natural heritages; therefore, knowing of quantitative and qualitative changes in their land use plays an essential role in the quality of these areas' management. various algorithms have been developed to classify satellite imagery in remote sensing, selecting an appropriate classification algorithm is very important in achieving the accurate results. In this research, a more accurate algorithm was determined by comparing the classification accuracy of two artificial neural network and support vector machine algorithms, and it was used to examine the process of the land use changes. The present study was performed in Boujagh National Park, in the Guilan Province, during the years 2000 to 2017, using satellite imagery ETM and OLI of Landsat 7 and 8. The results of the research revealed that the support vector machine algorithm with overall accuracy and Kappa coefficient of 86.42 and 0.83 respectively for the year 2000 and, 90.65 and 0.88 for the year 2017, classified the satellite images more precisely, in comparison with the artificial neural network algorithm with overall accuracy and Kappa coefficient of 83.71 and 0.80 respectively for the year 2000 and overall accuracy and Kappa coefficient of 89.25 and 0.87 for the year 2017. Therefore, the land use maps of the support vector machine algorithm were used to determine the land use changes. The study of land use change by this method concluded that the areas of the waterbody, sea, grassland and agriculture have decreased and marshland, woody and bare lands classes showed an increase during the study period.

    Keywords: Remote sensing, Land use, Support vector machine, Artificial Neural Network, Classification, Bojagh national park
  • سید احمد موسوی، نادیا عباس زاده طهرانی، میلاد جانعلی

    کشت و تولید محصول گندم همواره پاسخگوی نیازهای تغذیه ای بخش عظیمی از مردم جهان بوده است، لذا در ایران و جهان ازجمله محصولات کشاورزی استراتژیک محسوب می‌شود. در اختیار داشتن آمار و اطلاعات مناسب از سرزمین های تحت کشت گندم و برآورد میزان دقیق تولید آن‌ها در یک سال زراعی، به برنامه ریزان بخش کشاورزی و صنعت جهت مدیریت هرچه موثرتر تولید و مصرف محصول مذکور، کمک شایانی می نماید. یکی از ابزارهایی که در کمترین زمان و با هزینه پایین و دقت مناسب می‌تواند سطح زیر کشت گندم را محاسبه نماید علم و فناوری سنجش‌ازدور‌است. در تحقیق حاضر، با استفاده از کلاسه‌بندی نظارت‌شده تصاویر چند زمانه سنجنده سنتینل 2، سطح زیر کشت گندم و میزان تولید آن در دهستان سجاسرود از توابع شهرستان خدابنده استان زنجان برای سال زراعی 96-97 برآورده شده است. طبقه‌بندی نظارت‌شده با دقت کلی80% و ضریب کاپای 8/0 نتایج قابل‌قبول و مناسبی برای شناسایی و تفکیک گندم از سایر محصولات کشاورزی را ارایه می دهد.

    کلید واژگان: سطح زیر کشت, گندم, سنجش ازدور, طبقه بندی, سنتینل 2
    Seyed Ahmad Mousavi, Nadia Abbaszadeh Tehrani* Milad Janalipour

    Wheat is one of the strategic agricultural products in Iran and the world. Having statistics data and information about the area under cultivation of this crop and estimating the amount of its production in one crop year can help the planners of agriculture and industry parts in order to manage the production and consumption of the mentioned product as effectively as possible. One of the tools that can calculate the area under wheat cultivation in the shortest time and with low cost and appropriate accuracy is the remote sensing system. In this study, the area under cultivation of rain wheat crop in Sojasroud village of Khodabandeh city of Zanjan province was estimated using multi-time satellite images of Sentinel-2 measuring satellite and its results were compared with the agricultural cadastral map of 2017-2018. Supervised classification and two methods of support vector machine and maximum likelihood were used to extract information and by comparing the two methods, the most appropriate method was selected and suggested. The error matrix was used to evaluate the accuracy of the classification. The overall accuracy of the support vector machine method was 89% with a capa coefficient of 0.80 and in the maximum llikelihood method it was 88% with a capa coefficient of 0.79. The evaluation results showed that the support sector machine classification method has a higher accuracy than the maximum likelithood, so to extract the area under cultivation in the study area, the support vector Machine classification method is proposed. Comparison of the results of the area under cultivation with the statistics of Jihad Keshavarzi showed a deviation of 18% and the amount of wheat crop using the area under cultivation obtained by classification method was compared with the statistics of the Rural Cooperative Organization which showed a deviation of 17%. The results showed that the classification of the support vector machine is an acceptable and appropriate method for identifying and separating wheat from other agricultural crops.

    Keywords: Area under cultivation, Wheat, Remote sensing, Classification, Sentinel-2
  • میرمسعود خیرخواه زرکش، فرهاد حسین زاده آزاد*

    از آنجایی که اراضی کشاورزی منطقه دشتی اردبیل ازارزش بسیار زیادی به لحاظ تامین مواد غذایی دارد و باید سیاست های استفاده مناسب از کاربری ها در این عرصه به خوبی مدیریت گردد. لزوم تعیین روند و نرخ تبدیل پوشش اراضی برای برنامه ریزان توسعه به منظور برقراری نظام نامه استفاده از زمین ضروری است. به این منظور اطلاعات پویای زمانی سنجش از راه دور می تواند نقش مهم و موثر برای پایش و تجزیه و تحلیل تغییرات کاربری با استفاده از  تکنیک های آشکارسازی رقومی تغییرات که فرایند تعیین یا توصیف تغییرات درنوع پوشش اراضی و وضعیت استفاده زمین براساس اطلاعات تصاویر چند دوره زمانی است، داشته باشد. فرض اساسی در استفاده از داده های دورکاوی در این مطالعات بر این پایه است که می توان روند صعودی و نزولی تغییرات بین دو یا چند تاریخ را شناسایی و در سال های مختلف مورد تعقیب و پایش قرار داده و روابط متقابل میان پارامترهای طبیعی و اجتماعی و اقتصادی را کشف نمود. در این بخش از روش و متدلوژی سنجش از دور بر مبنای تصاویر ماهواره ای موجود و در دسترس با توجه به  تکنیک های طبقه بندی نظارت شده بیش ترین شباهت برای شناخت تغییر کاربری اراضی در محدوده توسعه یافته شهر اردبیل  استفاده شد.

    کلید واژگان: دور کاوی, طبقه بندی, آشکارسازی تغییرات, کاربری اراضی
    Mirmasood Kheirkhah Zarkesh, Farhad Hoseinzadeh Azad *

    Since agricultural plain lands of Ardabil have been important in providing food stuffs, and due to the necessities of land usage management in this section, determination of process and change-rating of land cover I important for developers. In this regard, dynamic temporal data of remote sensing can play an important role in searching and analyzing of land usage change which is done by means of numerical change detection techniques in which the descriptive process of changes in covering variety and situation of land use is based on the temporal series image data. Basic hypothesis in using remote sensing data is on the base of these criteria that claims the ascending or descending nature of changes between two or more periods is recognizable, and by comparing the related data from different years, we can detect mutual relationships between natural, social and economic parameters. In this study, maximum likelihood supervised classification and change detection techniques were applied to Land sat images acquired in 1990 and 2007, respectively, to map land cover changes in the Ardebil city. A supervised classification was carried out on reflective bands for the four images individually with the aid of ground truth data. Ground truth information collected were used to assess the accuracy of the classification results. Using ancillary data, and expert knowledge of the area through GIS further refined the classification results. Change detection technique was used to produce change image through cross-tabulation Changes among different land cover classes were assessed. During the study period, a very severe land cover change has taken place as a result of agricultural and urban development projects. These changes in land cover led to vegetation degradation and cropland in part of the study area.

    Keywords: Remote sensing, Classification, Change detection, land use
  • سید احمدرضا نورالدینی*، امیراسلام بنیاد
    زمینه و اهداف

    امکان بررسی پوشش زمین در مقیاس گسترده با استفاده از داده های سنجش از دور وجود دارد.  طبقه بندی پوشش زمین در استان گیلان با استفاده از سنجنده OLI و 4 کرنل ماشین بردار پشتیبان (SVM)، شبکه عصبی مصنوعی (ANN) و حداکثر احتمال (ML) انجام شد.

    روش بررسی

    طبقه بندی ها بر اساس نمونه های تعلیمی 10 پوشش مختلف در کل استان صورت گرفت. برای بالابردن دقت نقشه ها، تصویر OLI با استفاده از محصولات MODIS با اعمال کد انتقال تابشی وکتوری در طیف خورشید (SV6) مورد تصحیح اتمسفری قرار گرفته است. تصویر بر مبنای معیار همگنی به 219000 پلی گون، سگمنت بندی گردید. به روش کاملا تصادفی 2% از پلی گون های همگن برای آموزش و آزمون استفاده گردید. با بازدید میدانی، پلی گون ها به کلاس ها برچسب داده شدند.

    یافته ها

    به کارگیری تصاویر تصحیح شده با کد SV6 در طبقه بندی سبب ارتقاء صحت کلی الگوریتم های ANN،  SVMو ML به ترتیب به میزان 11/0%، 8/0% و 9/1% گردیده است. ارزیابی نتایج بیان گر برتری کرنل شعاعی SVM به ترتیب با صحت کلی و ضریب کاپای آماری 6/75% و 72/0 است. در این الگوریتم صحت کلاس های کشاورزی، مراتع مشجر و آبی به ترتیب 16/93%، 55/72% و 57/96% است. نتایج بیان گر ارتقاء صحت کلی الگوریتم SVM در مقایسه با الگوریتم ML به میزان 67/1% است.

    بحث و نتیجه گیری

    این تحقیق نشان دهنده برتری روش ناپارامتریکSVM  در مقایسه با پارامتریک در تهیه نقشه پوشش اراضی استان گیلان است. اعمال تصحیحات دقیق اثرات اتمسفر بر روی تصاویر در مناطق با مقیاس محلی و بزرگ با توجه به تغییرات شرایط اتمسفر و خصوصیات زمین قابل پیشنهاد است.

    کلید واژگان: لندست8, سنجند OLI, طبقه بندی, SV6
    Seyed Ahmadreza Nouredini *, Amireslam Bonyad
    Background and Objective

    There was a possibility to study earth coverage on a large scale using remote sensing data. The support vector machines (SVM), artificial neural network ‏)ANN( and maximum likelihood )ML‏( algorithms were used to Land cover classification on OLI sensors data and 4 kernels in Guilan province.

    Methods

    Classifications were based on training samples of 10 different covers in the entire Guilan province. To improve the classification accuracy on OLI image data, the MODIS atmospheric products used in 6SV atmospheric correction model. The OLI atmospheric corrected image segmented to 219000 polygons based on homogeneity. In this study 2% of polygons were used to test and training samples by the random statistical method. Polygons labeled to classes by field survey.

    Findings

    Applying ANN, SVM and ML algorithms on the OLI images after atmospheric corrected by 6SV model, the overall accuracy of classification improved 0.11%, 0.8%, and 1.9% respectively. The results indicated that the land cover map by RBF-SVM had overall accuracy and kappa coefficient with 75.6% and 0.72 respectively. In this algorithm accuracy of agriculture, range‏ shrub land and water body classes were ‏93.16%, 72.55% and‏ 96.57% respectively. The results of this study indicated that SVM algorithm improved overall accuracy 1.67% compared to the ML algorithm.

    Discussion and Conclusion

    This research indicated that in land cover classification and mapping of Guilan province, the nonparametric SVM algorithm had more accurate than the ML parametric algorithm. According to the results of this research, it is suggested that atmospheric correction models should be used especially on the large and local images.

    Keywords: LANDSAT 8, OLI Sensor, Classification, 6SV
  • سید قاسم قربان زاده زعفرانی*، علی ماشینچیان مرادی، علی رضا ساری، سید کرامت هاشمی عنا، سید محمدرضا فاطمی

    در این پژوهش وضعیت اکولوژیک بستر خلیج گرگان با استفاده از نتایج شاخص ‏های زیستی و شاخص تنوع طبقه بندی شده است. برای این منظور داده های مربوط به ماکروبنتوزها و ویژگی های رسوب خلیج طی سال 91-1390 از 22 نقطه به ثبت رسید. با توجه به تغییرات عمق خلیج در بخش های مختلف، ایستگاه ها در چهار گروه عمق کم تر از1 متر ، 1-2 متر، 2-3 متر و بیش تر از 3 متر دسته بندی گردید. محدوده کل مواد آلی، شن، سیلت و رس در خلیج گرگان به ترتیب (8/4-6/2)،  (51/7-37/6)، (57/7-47/1) و (4/7-1/3) درصد به ثبت رسید. ارتباط مثبت بین کل مواد آلی با بافت ریز دانه بستر گویای تجمع مواد آلی در اعماق بیش تر خلیج می باشد. آزمون های چند متغیره، اعماق کم تر خلیج را از اعماق بیش تر آن به لحاظ شرایط و پارامترهای محیطی به طور جداگانه دسته بندی کردند. دامنه تغییرات شاخص شانون، BO2A وM-AMBI  در خلیج گرگان به ترتیب (1/69-0/96)، (0/06-0/02) و (0/8-0/6) محاسبه گردید. به طورکلی با توجه به میانگین کل شاخص های محاسبه شده، شانون وضعیت اکولوژیک کل خلیج را ضعیف و شاخص های BO2A و M-AMBI وضعیت خلیج گرگان را خوب ارزیابی کردند. از طرفی ارزیابی شاخص های مورد نظر، وضعیت اعماق کم تر خلیج به ویژه در بخش غربی را بهتر از اعماق بیش تر (بخش شرقی) نشان داده ا ند که می تواند به دلیل شرایط هیدوردینامیکی منطقه و شرایط نامساعدتر برای گونه‏ های مختلف بنتیک به واسطه مجاورت با رودخانه قره سو و سایر ورودی ‏های اطراف خلیج باشد.

    کلید واژگان: طبقه بندی, شاخص ‏های اکولوژیک, ماکروبنتوز, خلیج گرگان
    Seyed Ghasem Ghorbanzadeh Zafarani *, Ali Mashinchian Moradi, AliReza Sari, Seyed Keramat Hashemi Ana, Seyed MohammadReza Fatemi

    In this study, the ecological status of Gorgan Bay is classified by using the results of biological indicators and diversity index. For this aim, data on macrobenthose and  the sedimentation characteristics were recorded at 22 sampling points during 2011 to 2012. According to the changes in the depth of the bay in different parts, the stations were classified into four groups of depth less than 1 meter, 1-2 meters, 2-3 meters and more than 3 meters. The total Range of organic matter, gravel, silt and clay in the Bay was recorded in (1.3-4.7), (47.1-57.7), (37.6-51.7) and (6.2-8.4) percent. The positive relationship between the total organic matter and the texture of bed indicates the accumulation of organic matter in the depths of the bay. By using multivariate tests the classified and distinct high depth from low depth of the bay, based on environmental conditions and parameters. The amplitudes change of Shannon index, BO2A and M-AMBI in the Bay were, calculated in range of (0.1-96.69), (0.02- 0.06) and (0.6- 0.8). Overall, according to the average of the calculated indices, Shannon weakened the whole ecological status of the bay and BO2A and M-AMBI indices the desired results were obtained. On the other hand, evaluation of the indicators showed that the condition of the shallow western part is better than the deep eastern part. This is can because of the region's hydrodynamic conditions and the adverse conditions for different benthic species due to the proximity to the River and other entrance around the bay.

    Keywords: Classification, Ecological Indices, Macrobenthose, Gorgan bay
  • Mohsen Amirfazli *, Sasan Safarzadeh, Reza Samadi Khadem
    Hazardous waste is generated by numerous industrial, commercial, agricultural and even domestic sources. The dangers of these wastes can vary depending on their types and environmental conditions and various short-term and long-term effects ranging from acute to chronic are expected. This study was carried out in regard to health and economic considerations and to create motivation for conducting studies to identify industrial hazardous waste which plays an important role in growing trend of country's industry. In this research, we selected 51 important industrial units of Ardebil province and data were collected through questionnaires, in-person interviews with the units’ authorities and referring to available documents. The information contained the types and amount of waste, temporary storage method, Discharge frequency, final disposal method, and the status of recycling and reuse. The results obtained from data analysis without considering uncontrolled industrial wastewater, show the annual production of Approximate 2,010,265 tons of waste; which about 1502 tons of this amount (according to available list in the Basel Convention), has classified under the title hazardous waste and about 12.42% of this type of waste was toxic. The share of liquid and solid physical states of the waste is respectively 59.87%, 13.77%. It should be noted that there is no temporary storage for about 20.29% of this waste. Reviewing the final disposal method indicates that about 28.66% of hazardous waste is discharged into the environment without any control.
    Keywords: Environmental Management, Industrial hazardous Wastes, Classification, Basel Convention
  • C.E. Akumu *, J. Henry, T. Gala, S. Dennis, C. Reddy, F. Tegegne, S. Haile, R.S. Archer
    The understanding of inland wetlands’ distribution and their level of vulnerability is important to enhance management and conservation efforts. The aim of the study was to map inland wetlands and assess their distribution pattern and vulnerability to natural and human disturbances such as climate change (temperature increase) and human activities by the year 2080. Inland wetland types i.e. forested/shrub, emergent and open water bodies were classified and mapped using maximum likelihood standard algorithm. The spatial distribution pattern of inland wetlands was examined using average nearest neighbor analysis. A weighted geospatial vulnerability analysis was developed using variables such as roads, land cover/ land use (developed and agricultural areas) and climate data (temperature) to predict potentially vulnerable inland wetland types. Inland wetlands were successfully classified and mapped with overall accuracy of about 73 percent. Clustered spatial distribution pattern was found among all inland wetland types with varied degree of clustering. The study found about 13 percent of open water bodies, 11 percent of forested/shrub and 7 percent of emergent wetlands potentially most vulnerable to human and natural stressors. This information could be used to improve wetland planning and management by wetland managers and other stakeholders.
    Keywords: Classification, Distribution pattern, Geospatial, Inland wetlands, Satellite data
  • جمیل امان اللهی، مرضیه صالحی، ندا رستمیان، هادیه مولوی، شهین مفاخری
    در سال های اخیر سنجش از دور به صورت گسترده ای برای شناسایی تغییرات سطح رستنی های مختلف و طبقه بندی آنها به کار رفته است. موضوع افزایش سطح نیزارهای دریاچه زریوار و خطرات آن برای زندگی موجودات آبزی این دریاچه به یکی از موارد مورد بحث تبدیل شده است. در این مطالعه برای شناسایی تغییرات سطح این نیزارها بین سال های 1363 تا 1390 از تصاویر ماهواره لندست TM و ETM+ استفاده شد. به این منظور نوارهای 3، 4 و 5 تمامی تصاویر با خطای میانگین مربعات کمتر از یک پیکسل تصحیح هندسی شدند. برای شناسایی تغییرات پهنه آبی بر روی تصاویر ترکیبی به ترتیب از نوارهای 5، 4 و 3 که در ماه هایی پر آب دریاچه گرفته شده بودند طبقه بندی نظارت شده با معادله حداکثر احتمال اعمال شد. شاخص NDVI برای شناسایی تغییرات سطح نیزار بر روی تصاویر گرفته شده در ماه های کم آبی دریاچه به کار رفت. نتایج نشان می دهد افزایش و کاهش سطح پهنه آبی دریاچه و نیزارهای اطراف آن رابطه مستقیمی با میزان بارندگی موثر دارد و امکان دارد افزایش سطح در هر دو بخش نیزار و پهنه آبی همزمان رخ دهد. مطالعه نوار ساحلی بین پهنه آبی و نیزارهای دریاچه با GPS و تصاویر ترکیبی نشان داد که این نوار در طول سه دهه گذشته نیز تغییر محسوسی نداشته است.
    کلید واژگان: سنجش از دور, شاخصNDVI, طبقه بندی, پهنه آبی, معادله حداکثر احتمال
    Jamil Amanollahi, Marziye Salehi, Neda Rostamiyan, Hadieh Maulavi, Shahin Mafakheri
    In the past decade, remote sensing has been widely used to identify surface changes of different vegetation and their classification. Increasing the level of Canebrake of the Zarivar Lake and its risks for aquatic organisms living in the lake has become one of the most important issues in recent years. Therefore, the aim of this study was to identify surface changes of this Canebrake in the past three decades using Landsat TM and ETM. For this purpose, bands 3, 4, and 5 of images were geo-referenced. RMSE were less than one pixel for all bands. The supervised classification method with a maximum likelihood algorithm was also applied to detect the changes of water area on the combined images (bands 5, 4, and 3) of months with full water in the lake. NDVI index was utilized to identify the surface changes of Canebrake on the images taken in the months with low water in the lake. The results show that the rise and fall of water area and surrounding canebrake has a direct correlation with a rainfall and increase in both levels maybe occur at the same time. Study on the coastal strip of water area with GPS and combined images showed that the coastal line had not a significant change in the past three decades.
    Keywords: Remote sensing, NDVI index, classification, Water zone, maximum likelihood algorithm
  • میر مسعود خیرخواه زرکش، فرهاد حسین زاده آزاد*
    از آنجایی که اراضی کشاورزی منطقه دشتی اردبیل ازارزش بسیار زیادی به لحاظ تامین مواد غذایی دارد و باید سیاست های استفاده مناسب از کاربری ها در این عرصه به خوبی مدیریت گردد. لزوم تعیین روند و نرخ تبدیل پوشش اراضی برای برنامه ریزان توسعه به منظور برقراری نظام نامه استفاده از زمین ضروری است. به این منظور اطلاعات پویای زمانی سنجش از راه دور می تواند نقش مهم و موثر برای پایش و تجزیه و تحلیل تغییرات کاربری با استفاده از تکنیک های آشکارسازی رقومی تغییرات که فرایند تعیین یا توصیف تغییرات درنوع پوشش اراضی و وضعیت استفاده زمین براساس اطلاعات تصاویر چند دوره زمانی است، داشته باشد. فرض اساسی در استفاده از داده های دورکاوی در این مطالعات بر این پایه است که می توان روند صعودی و نزولی تغییرات بین دو یا چند تاریخ را شناسایی و در سال های مختلف مورد تعقیب و پایش قرار داده و روابط متقابل میان پارامترهای طبیعی و اجتماعی و اقتصادی را کشف نمود. در این بخش از روش و متدلوژی سنجش از دور بر مبنای تصاویر ماهواره ای موجود و در دسترس با توجه به تکنیک های طبقه بندی نظارت شده بیش ترین شباهت برای شناخت تغییر کاربری اراضی در محدوده توسعه یافته شهر اردبیل استفاده شد.
    کلید واژگان: دور کاوی, طبقه بندی, آشکارسازی تغییرات, کاربری اراضی
    Mirmasood Kheirkhah Zarkesh, Farhad Hoseinzadeh Azad *
    Since agricultural plain lands of Ardabil have been important in providing food stuffs, and due to the necessities of land usage management in this section, determination of process and change-rating of land cover I important for developers. In this regard, dynamic temporal data of remote sensing can play an important role in searching and analyzing of land usage change which is done by means of numerical change detection techniques in which the descriptive process of changes in covering variety and situation of land use is based on the temporal series image data. Basic hypothesis in using remote sensing data is on the base of these criteria that claims the ascending or descending nature of changes between two or more periods is recognizable, and by comparing the related data from different years, we can detect mutual relationships between natural, social and economic parameters. In this study, maximum likelihood supervised classification and change detection techniques were applied to Land sat images acquired in 1990 and 2007, respectively, to map land cover changes in the Ardebil city. A supervised classification was carried out on reflective bands for the four images individually with the aid of ground truth data. Ground truth information collected were used to assess the accuracy of the classification results. Using ancillary data, and expert knowledge of the area through GIS further refined the classification results. Change detection technique was used to produce change image through cross-tabulation Changes among different land cover classes were assessed. During the study period, a very severe land cover change has taken place as a result of agricultural and urban development projects. These changes in land cover led to vegetation degradation and cropland in part of the study area.
    Keywords: Remote Sensing, Classification, Change detection, Land use
  • Leila Mohammadi Dehcheshme, Forough Papahn Shoshtari, Simin Dehghan Madise
    Despite of all the studies of aquatic invertebrates of Bahracan estuary, as yet Amphipoda inhibiting in the eastern shores muddy substrates of it, have not been studies from the point view of identification. The present investigation, aims to identify the Amphipods Bahracan shores (29˚ 50'-30˚ 15'N, 49˚ 30'-49˚ 55'E) of the Persian Gulf which was done during the seasons of spring and summer of 1392. Sampling was done by using vanveen Grab (with 0.0625m² surface areas) from stations in intertidal zone and 6-25 m depth. The samples were counted and identified through the valid identification keys. The obtained results of the study, identified six families were belonged to suborder Gammaridea, which are fallow: Ampithoidae, Ampeliscidae, Isaeidae, Gammaridae, Melitidae, Ischyroceridae. Frequency of each family was calculated throughout the study period; the families of Ampeliscidae and Ampithoidae were identified and introduced as the dominant families in Bahracan with 39.47%.
    Keywords: Amphipoda, Eastern shores of Bahracan, Classification, Ampeliscidae, Ampithoidae
  • علی بیات، حمیدرضا خالصی فرد، امیر معصومی

    دسته بندی هواویزهای جوی یکی از مباحث مهم در سنجش از دور هواویزها توسط ابزارهای فضابرد و هوابرد و زمین پایه است. تابع فازی قطبیده هواویزها معیاری از قطبش نور پراکنده شده خورشید توسط ذرات مایع یا جامد معلق در جو زمین است. در این مقاله توانایی دسته بندی هواویزهای جوی توسط پارامتر تابع فازی قطبیده برای جو شهر زنجان بررسی می شود. برای این کار، پارامترهای عمق اپتیکی هواویزها، نمای آنگستروم، سپیدایی پراکندگی تک باره و تابع فازی قطبیده هواویزها بررسی می شود. عمق اپتیکی هواویزها معیاری از میزان ذرات هواویزها در ستون قائم از جو زمین است. نمای آنگستروم معیاری کیفی از اندازه ذرات غالب در جو است که از داده های عمق اپتیکی هواویزها در سه طول موج به دست می آید. سپیدایی پراکندگی تک باره معیاری از جذب ذرات هواویز جوی را نشان می دهد. تابع فازی قطبیده نیز معیاری از میزان قطبش خطی نور پراکنده شده از ذرات هواویز را نشان می دهد. این پارامترها از اندازه گیری شیدسنج خورشیدی قطبیده CE318-2 در بازه زمانی بهمن 1 3 8 8 تا دی 1 3 9 1 استخراج می شوند. نتایج نشان می دهند، بیشینه مقدار تابع فازی قطبیده همبستگی خطی بسیار خوبی (95/0=R) با پارامتر نمای آنگستروم دارد. هم چنین این پارامتر همبستگی خطی منفی (76/0-=Rو 33/0- =R) به ترتیب با عمق اپتیکی هواویزها و سپیدایی پراکندگی تک باره دارد. بنابراین پارامتر تابع فازی قطبیده توانایی دسته بندی هواویزهای شهری-صنعتی که در ناحیه کمربند غباری قرار دارند، را دارد.

    کلید واژگان: هواویز, شیدسنج خورشیدی, تابع فازی قطبیده, دسته بندی, کمربند غباری
    Ali Bayat, Hamid Reza Khalesifard, Amir Masoumi

    Classification of atmospheric aerosols is one of the important topics in the airborne and ground-based instruments remote sensing. Polarized sky radiance resulting from interaction between sunlight and atmospheric particles strongly depends on the presenceof aerosols in the atmosphere, and can be monitored by looking at the aerosol polarized phase function. In this paper, the ability the polarized phase function to classify atmospheric aerosols has been investigated for the atmosphere of the Zanjan. To do this, aerosol optical depth (AOD), Angstrom exponent (α), single scattering albedo (SSA), and polarized phase function have been retrieved from the measurements of SPM in the period of February 2010 to December 2012. The results show that the maximum valueof aerosol polarized phase function is strongly correlated (R = 0.95) with the Angstrom exponent. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R =−0.76 and−0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region –a populated city in the semi-arid area and surrounded by some dust sources of the Earth’s dust belt.

    Keywords: Aerosol, Sun-photometer, Polarized phase function, classification, Dust belt
  • مرتضی عاشورلو، عباس علیمحمدی، پرویز رضاییان، داود عاشورلو

    استفاده از علم سنجش از دور در تهیه نقشه پراکنش ا راضی و آمار سطح زیر کشت گندم در شهرستان بهار همدان مدنظر قرار گرفته است از این رو با انجام مطالعات پایه در مورد این محصول کشاورزی بر اساس سطح شهرستان و تحقیق در خصوص تکنیک های مناسب پردازش تصویر، تصاویر ماهواره اسپات در دو زمان مورد استفاده قرار گرفتند. تابع تحلیل تشخیص به عنوان یک روش آماری چند متغیره برای طبقه بندی کلاس های کشاورزی بر روی تصاویر مورد استفاده قرا رگرفت تصاویر دو زمانه ماهواره SPOT با الگوریتم چند مقیاسه قطعه بندی شدند سپس خصوصیات آماری پیکسل های محاط در هر قطعه به عنوان متغیرهای تحلیل تشخیص در نظر گرفته شدند . بعد از انجام تحلیل تشخیص گام به گام ، قطعات تصویر با استفاده ازتوابع تشخیص حاصله ازنمونه های آموزشی در چند مرحله طبقه بندی شدند. دقت تفکیک و دقت طبقه بندی به عنوان مفاهیمی جداگانه شناخته شدند از طرف دیگر تحلیل تشخیص پیکسل مبنا با در نظر گرفتن پیکسل های هر باند به عنوان متغیرهای ورودی تحلیل به صورت جداگانه انجام پذیرفت. با مقایسه نتایج هر دو روش مشخص گردید که روش پیکسل مبنا در تفکیک گندم از سایر کلاس ها از جمله جو دقت بیشتری دارد.

    کلید واژگان: طبقه بندی, گندم, تابع تشخیص, سنجش از دور, تصاویر دو زمانه
    Morteza Ashorlo, Abbas Alimohammadi, Parviz Ziaeian, Davoud Ashorlo

    In this paper, has been tried to discriminate wheat_cultivated fields from those crops that have similar characteristics to this class, spectrally and phonologically, in bahar_hamedan region. So based on cultivation calendar of study region, decided to apply bitemporal or dual_season multispectral spot5 images for this aim. Both images divided to discrete objects(polygpns) using multiresoluion segmentation algorithm. The zonal attributes of segments entered to discriminant analysis as variables. After the stepwise discrimination analysis, all the segments were classified using outputted discrimination functions. ‘’discrimination accuracy’’ and ‘’ classification accuracy’’ were defined as discrete concepts. Also, with assuming the DNs of each band pixels as variables “pixel based” discriminant analysis was applied. Comparison of both methods results indicated that generally, accuracy of pixel_based classification is upper than other method.

    Keywords: classification, wheat, discriminant analysis, remote sensing, bitemporal images
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال