جستجوی مقالات مرتبط با کلیدواژه "time series forecasting" در نشریات گروه "صنایع"
تکرار جستجوی کلیدواژه «time series forecasting» در نشریات گروه «فنی و مهندسی»-
هدف
بیماری کرونا ویروس (کووید-19) یک بیماری همه گیر است که همه کشورهای جهان را درگیر کرده است. پیش بینی روند گسترش بیماری کرونا منجر خواهد شد که تدابیر لازم جهت کنترل این بیماری از سوی مسیولین انجام شود. این موارد شامل افزایش واکسیناسیون، قرنطینه کردن شهرها و ممنوعیت ورود و خروج، افزایش ظرفیت تخت های بیمارستانی، ایجاد مراکز واکسیناسیون شبانه روزی، الزام به استفاده از ماسک در اماکن عمومی و رعایت فواصل اجتماعی به صورت کلی آمادگی لازم جهت برخورد با پیک جدید بیماری کرونا است. لذا پیش بینی چنین مواردی سبب کاهش آمار مبتلایان به کرونا و لذا کاهش نرخ مرگ ومیر خواهد شد.
روش شناسی پژوهش:
در این مقاله با استفاده از آنالیز طیفی منفرد (SSA)، پیش بینی میزان پیک ششم مبتلایان کرونا با لحاظ کردن وضع فعلی صورت گرفته است. به منظور بهبود فرآیند گروه بندی الگوریتم SSA، انتخاب مقادیر ویژه به صورت فرآیند بهینه سازی صورت گرفته است به طوری که سری زمانی پیش بینی شده با توجه به شاخص خطای مدنظر به طور قابل توجهی بهبود یافته است.
یافته هابا مقایسه روش پیشنهادی با سایر روش های پیش بینی شامل میانگین متحرک خود همبسته یکپارچه (ARIMA)، ARIMA کسری (ARFIMA)، TBATS و خود همبسته شبکه عصبی (NNAR)، مشاهده می شود که خطای پیش بینی به حد قابل قبولی بوده و می تواند روش SSA جهت پیش بینی مورد استناد قرار گیرد.
اصالت/ارزش افزوده علمی:
در این مقاله با استفاده از روش کارآمد SSA، موارد مبتلا جدید کرونا ویروس را پیش بینی می کند و نتایج ارایه شده اثربخشی روش پیشنهادی را تایید می کند.
کلید واژگان: بیماری کرونا (کووید 19), پیش بینی سری زمانی, آنالیز طیفی منفرد, پیک ششم کرونا, SSAPurposeCoronavirus (COVID-19) is a pandemic that has affected all countries of the world. Forecasting the spread of corona disease will lead to the necessary measures to be taken by the authorities to control this disease. These include increasing vaccinations, quarantining cities and banning entry and exit, increasing the capacity of hospital beds, setting up round-the-clock vaccination centers, requiring the use of masks in public places, and observing social distances. Therefore, predicting such cases will reduce the number of corona cases and therefore reduce the mortality rate.
MethodologyIn this paper, using the Singular Spectrum Analysis (SSA) algorithm, the sixth peak of coronavirus in Iran is predicted by considering the current situation. To improve the grouping process of the SSA algorithm, eigenvalues have been selected in the optimization process, so that the predicted time series of which has been significantly improved according to the error-index.
FindingsComparing the proposed method with other forecasting methods include Autoregressive Integrated Moving Average (ARIMA), Fractional ARIMA (ARFIMA), TBATS, and Neural Network Autoregression (NNAR), it is observed that the forecasting error is acceptable and the SSA method can be used for forecasting.
Originality/Value:
This article predicts a new case of COVID-19 using efficient method SSA and the presented results confirm the effectiveness of the proposed method.
Keywords: COVID-19, Corona Sixth Peak, Singular Spectrum Analysis, Time series forecasting -
Journal of Industrial Engineering and Management Studies, Volume:7 Issue: 2, Summer-Autumn 2020, PP 187 -201With the increasing importance of forecasting with the utmost degree of accuracy, utilizing hybrid frameworks become a must for obtaining more accurate and more reliable forecasting results. Series hybrid methodology is one of the most widely-used hybrid approaches that has encountered a great amount of popularity in the literature of time series forecasting and has been applied successfully in a wide variety of domains. In such hybrid methods is assumed that there is an additive relationship among different components of time series. Thus, based on this assumption, various individual models can apply separately on decomposed components, and the final forecast can be obtained. However, developed series hybrid models in the literature are constructed based on the decomposing time series into linear and nonlinear parts and generating linear-nonlinear modeling order for decomposed parts. Another assumption considered in the traditional series model is assigning equal weights to each model used for modeling linear and nonlinear components. Thus, contrary to traditional series hybrid models, to improve the performance of series hybrid models, these two basic assumptions have been violated in this paper. This study aims to propose a novel weighted MLP-ARIMA model filling the gap of series hybrid models by changing the order of sequence modeling and assigning weight for each component. Firstly, the modeling order is changed to nonlinear-linear, and then Multi-Layer Perceptron Neural Network (MLPNN) -Auto-Regressive Integrated Moving Average(ARIMA) models are employed to model and process nonlinear and linear components respectively. Secondly, each model's weights are computed by the Ordinary Least Square (OLS) weighting algorithm. Thus, in this paper, a novel improved weighted MLP-ARIMA series hybrid model is proposed for time series forecasting. The real-world benchmark data sets, including Wolf's sunspot data, the Canadian lynx data, and the British pound/US dollar exchange rate data, are elected to verify the effectiveness of the proposed weighted MLP-ARIMA series hybrid model. The simulation results revealed that the weighted MLP-ARIMA model could obtain superior performance compared to ARIMA-MLP, MLP-ARIMA, as well as the ARIMA and MLPNN individual models. The proposed hybrid model can be an effective alternative to improve forecasting accuracy obtained by traditional series hybrid methods.Keywords: series hybrid model, weighted MLP-ARIMA model, Auto-Regressive Integrated Moving Average (ARIMA), multi-layer perceptron neural network (MLPNN), Time series forecasting
-
Demand forecasting is a vital task for firms to manage the optimum quantity of raw material and products. The demand forecasting task can be formulated as a time series forecasting problem by measuring historical demand data at equal intervals. Demand time series usually exhibit a seasonal pattern. The principle idea of this study is to propose a method that predicts the demand for every different season using a specialized forecaster. In this study, we test our proposal using the Long Short-Term Memory (LSTM) which is a deep learning technique for time series forecasting. Specifically, the proposed method instead of learning an LSTM model using the whole demand data builds a specialized LSTM model corresponding to each season. The proposed method is evaluated using different topologies of the LSTM model. The results of experiments indicated that the proposed method outperforms the regular method considering the performance measures. The proposed method can be used in other domains for demand forecasting.
Keywords: LSTM, Time series forecasting, Demand prediction -
روش های پیش بینی از کارآمدترین ابزارهای موجود به منظور اتخاذ تصمیمات مدیریتی در حوزه های مختلف علوم هستند. دقت پیش بینی ها یکی از مهم ترین عامل های موثر بر کیفیت تصمیمات اتخاذی است که رابطه ی مستقیمی با کیفیت این تصمیمات دارند. پیش بینی تقاضای الکتریسته یکی از چالش برانگیزترین حوزه های پیش بینی است. مشخصه ی منحصربه فرد الکتریسته، که پیش بینی را در مقایسه با سایر کالاهای تولیدی دشوارتر می سازد، عدم امکان ذخیره سازی آن به منظور مصرف در آینده است. این موضوع سبب ایجاد سطح بالایی از ابهام در داده های مرتبط با این گونه از بازارها می شود. ابزارهای هوش محاسباتی و محاسبات نرم از جمله دقیق ترین روش های حال حاضر به منظور مدل سازی عدم قطعیت موجود در داده ها هستند. در این مقاله، با ترکیب روش های مذکور، یک روش هوشمند نرم به منظور پیش بینی الکتریسیته ارائه شده است. ایده ی اصلی مدل استفاده ی هم زمان از مزایای ابزارهای هوش محاسباتی و محاسبات نرم در مدل سازی سیستم های پیچیده است. نتایج نشان دهنده ی دقت بالاتر روش پیشنهادی نسبت به سایر مدل هاست.
کلید واژگان: ابزارهای هوش محاسباتی و محاسبات نرم, پیش بینی سری های زمانی, تقاضای فصلی الکتریسیته, پرسپترون های چندلایه (MLP), خودرگرسیون میانگین متحرک انباشته ی فصلی (SARIMA)Forecasting methods are one of the most efficient available approaches to make managerial decisions in various fields of science. Forecasting is a powerful approach in the planning process, policy choices and economic performance. The accuracy of forecasting is an important factor affects the quality of the decisions that generally has direct and non-strict relationship with the quality of decisions. This is the most important reason that why endeavor for improving the forecasting accuracy has never been stopped in the literature. Electricity demand forecasting is one of the most challenging areas forecasting and important factors in the management of energy systems and economic performance. Determining the level of electricity demand is essential for careful planning and implementation of the necessary policies. For this reason electricity demand forecasting is important for financial and operational managers of electricity distribution. The unique feature of the electricity which makes it more difficult forecasting in comparison with other commodity is the impossibility of storing it in order to use in the future. In other words, the production and consumption of electricity should be taken simultaneously. It has caused to create a high level of complexity and ambiguity in electricity markets data. Computational intelligence and soft computing approaches are among the most precise and useful methods for modeling the complexity and uncertainty in data. In this paper a soft intelligent method by combining mentioned methods is proposed in order to electricity demand forecasting. The main idea of the proposed model is to simultaneously use advantages of these models in modeling complex and ambiguous systems. Empirical results indicate that proposed model can achieve more accurate results rather than its component (Seasonal auto-regressive Integrated Moving Average models, artificial neural network) and also other current single forecasting methods such as classic regression, Seasonal Auto-Regressive Integrated Moving Average-fuzzy models and support vector machine
Keywords: Computational intelligence and soft computing tools, time series forecasting, seasonal demand of electricity, multilayer perceptron, seasonal auto-regressive integrated moving average models -
تصمیم گیری یکی از ارکان اساسی مدیریت و عامل مهمی در شکوفایی سازمان هاست. این اهمیت تا جایی است که مدیران به دنبال به کارگیری ابزارهای کارآمد به منظور بهبود کیفیت تصمیمات خود هستند. صنعت فولاد نیز، یکی از صنایع زیربنایی کشور، از این قاعده مستثنی نیست و شایسته ی توجهی عمیق است. در این مقاله سعی شده است تا با به کارگیری روش های علمی، مدلی به منظور مدیریت مصرف فولاد خام کشور ارائه شود. پیشینه ی موضوع نشان می دهد که به دلیل سطح بالای پیچیدگی و ابهام موجود در بازارهای مالی حصول نتایج دقیق در پیش بینی مصرف به ویژه در افق های بلندمدت دشوار است. از این رو در این مقاله به منظور مدل سازی هم زمان پیچیدگی ها و عدم قطعیت های موجود در داده ها، ترکیبی از مدل های هوشمند و محاسبات نرم به کار گرفته شده است. نتایج حاصل از این بررسی ها بیان گر کارایی مدل های هوشمند نرم نسبت به مدل های کلاسیک نرم و نیز برتری مدل های هوشمند سخت در مقابل مدل های کلاسیک سخت هستند.
کلید واژگان: پیش بینی سری های زمانی, مصرف فولاد خام, انتخاب متغیر, ابزارهای هوش محاسباتی, محاسبات نرمDecision-making as one of the principles of management is considered an important factor in prosperity of the organizations. This is so important that managers use efficient tools to improve the quality of their decisions. Steel industry is one of the major industries in this country; consequently, it deserves special attention. In this paper, the main aim is to use scientific methods to manage crude steel consumption in the country. However, the literature shows that it is relatively difficult to yield accurate results in the prediction of consumption, especially in long-term horizon. Researchers believe that high level of complexity and uncertainty in financial markets is main reason of this matter. Therefore, in this paper, a hybrid of intelligent and soft computing models have been used as an effective way in order to model the complexities and uncertainties simultaneously in the data. In this way, the list of variables is recognized based on the literature and expert opinions. Then the linear and nonlinear relationships and also correlations between variables are evaluated and final explanatory variables specified. Finally, four models including hard classic, soft classic, hard intelligent and soft intelligent are designed to predict steel consumption in both short and long term horizons and their results are compared with each other. Empirical results indicate that using the hard intelligent model makes improvement 22.68% and 41.41% in comparison with hard classic model in short and long term horizons respectively in Root Mean Squared Error (RMSE). In addition, the soft intelligent model makes improvement 43.01% and 92.72% in comparison with soft classic model and hard classic model respectively in short term horizon and 34.68% and 91.53% in long term horizon. Results of the study indicate superiority of the soft intelligent models over hard intelligent models and superiority of hard intelligent models over hard classic models. Results of the study indicate superiority of the soft intelligent models and hard intelligent models over hard intelligent models and hard classic models respectively.
Keywords: Time series forecasting, crude steel consumption, feature selection, computational intelligence tools, soft computing -
Journal of Optimization in Industrial Engineering, Volume:11 Issue: 24, Summer and Autumn 2018, PP 15 -22Petroleum (crude oil) is one of the most important resources of energy and its demand and consumption is growing while it is a non-renewable energy resource. Hence forecasting of its demand is necessary to plan appropriate strategies for managing future requirements. In this paper, three types of time series methods including univariate Seasonal ARIMA, Winters forecasting and Transfer Function-noise (TF) models are used to forecast the petroleum demand in OECD countries. To do this, we use the demand data from January 2001 to September 2010 and hold out data from October 2009 to September 2010 to test the sufficiency of the forecasts. For the TF model, OECD petroleum demand is modeled as a function of their GDP. We compare the root mean square error (RMSE) of the fitted models and check what percentage of the testing data is covered by the confidence intervals (C.I.). Accordingly we conclude that Transfer Function model demonstrates a better forecasting performance.Keywords: Time series forecasting, OECD countries, Petroleum demand
-
International Journal of Industrial Engineering and Productional Research, Volume:23 Issue: 4, Dec 2012, PP 261 -268In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficient once in financial markets. In this paper, the performance of four interval time series models including autoregressive integrated moving average (ARIMA), fuzzy autoregressive integrated moving average (FARIMA), hybrid ANNs and fuzzy (FANN) and Improved FARIMA models are compared together. Empirical results of exchange rate forecasting indicate that the FANN model is more satisfactory than other those models. Therefore, it can be a suitable alternative model for interval forecasting of financial time series.Keywords: Artificial Neural Networks (ANNs), Auto, Regressive Integrated Moving Average (ARIMA), Time series forecasting, Hybrid forecasts, Interval models, Exchange rate
-
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models proposed in several past decades, it is widely recognized that exchange rates are extremely difficult to forecast. Artificial Neural Networks (ANNs) are one of the most accurate and widely used forecasting models that have been successfully applied for exchange rate forecasting. In this paper, a hybrid model is proposed based on the basic concepts of artificial neural networks in order to yield more accurate results than the traditional ANNs in short span of time situations. Three exchange rate data sets—the British pound, the United States dollar, and the Euro against the Iran rial-are used in order to demonstrate the appropriateness and effectiveness of the proposed model. Empirical results of exchange rate forecasting indicate that hybrid model is generally better than artificial neural networks and other models presented for exchange rate forecasting, in cases where inadequate historical data are available. Therefore, our proposed model can be a suitable alternative model for financial markets to achieve greater forecasting accuracy, especially in incomplete data situations.
Keywords: Computational Intelligence, Artificial Neural Networks (ANNs), Fuzzy logic, Time series forecasting, Financial markets, Exchange rate
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.