جستجوی مقالات مرتبط با کلیدواژه "python" در نشریات گروه "پزشکی"
-
Background
Comparison of normal tissue integral dose and treatment monitor units from 3DCRT, IMRT and Rapid treatment plan for oesophagus, left breast, cervical and oropharynx cancer. The calculated normal tissue integral dose from different treatment plans with static and dynamic leaf positions, such as 3DCRT, IMRT and Rapid arc were compared with the generated MU.
Material and MethodsNine patients from oesophagus, left breast and cervix cancer and twelve patients from oropharynx cancer with a total of one hundred and thirty-five generated plans from 3DCRT, IMRT and Rapid arc were analysed. The normal tissue integral dose (NTID) was calculated from in-house developed Python software using a standard formula from the dose-volume histogram.
ResultsThe analysis showed that the NTID and MU differed significantly from all three treatment planning methods and cancer sites. The highest integral dose was from IMRT and Rapid Arc in the oropharynx and oesophagus cancer site; cervical cancer had a 50% lower NTID, and left breast cancer had a 25% lower NTID than oesophageal cancer.
ConclusionThe results show that NTID is inversely related to body volume, and that MU depends on the type of treatment planning (greater in IMRT).
Keywords: Normal Tissue Integral Dose, Monitor Units, Python, Intensity-Modulated Radiotherapy, Rapid Arc -
This paper contributes to modeling and forecasting gas booking demand in an online retail environment using time series techniques. Our work demonstrates how historical demand data can be utilized to estimate future demand and its impact on the supply chain. The historical demand data were used to create several autoregressive integrated moving average (ARIMA) models using the Box-Jenkins time series procedure. The best model was selected based on four performance criteria: statistical results, maximum likelihood, and standard error. The selected model, ARIMA (1, 1, 1), was validated using additional historical demand data under the same conditions. The results demonstrate that the model can effectively estimate and forecast future demand for gas booking in an online retail environment. These findings will provide trustworthy guidance to the company's management in decision-making.Keywords: Fuzzy Time Series, Online Retail, Python, ARIMA
-
زمینه و اهداف
حجم بسیار بالای انتشارات معتبر COVID-19 در سراسر جهان، ضرورت پایش و تحلیل متون علمی COVID-19 را برای پژوهشگران در سطح خرد و برای سیاست گذاران و برنامه ریزان در سطح کلان بیش از پیش آشکار می سازد. به بیان دیگر، نتایج منتج از تحلیل مدارک منتشرشده COVID-19 با روش ها و تکنیک های متنکاوی از جایگاه و اهمیت ویژهای برای پژوهشگران، سیاست گذاران و برنامه ریزان علوم پزشکی در سطح ملی و بین المللی برخوردار است و ضرورت انجام چنین پژوهشی را بیش از پیش آشکار می سازد. هدف اصلی پژوهش حاضر شناسایی موضوعات نو ظهور و روند تغییر در واژگان علمی در سطح ملی و بین المللی حوزه موضوعی COVID-19 با روش متن کاوی است.
مواد و روش کارنوع پژوهش حاضر، کاربردی است. این پژوهش با استفاده روش متن کاوی و الگوریت مها و تکنیک های مربوط به آن و همچنین طبقه بندی متون با رویکرد تحلیلی-تطبیقی انجام شده است. جامعه پژوهش حاضر شامل کلیه انتشارات COVID-19 نمایه شده در پایگاهPubMed Central® (PMC) است. تا تاریخ بیست خردادماه سال 1400 تعداد رکوردهای بازیابی شده از پایگاه PubMed Central® (PMC)، 160862 مورد بود. از این تعداد 3143 مورد انتشارات ملی و 157719 مورد انتشارات بین المللی COVID-19 است. در این پژوهش از زبان برنامه نویسی پایتون و کتابخانه های مرتبط با این برنامه استفاده شد. مهم ترین واژگان بر اساس وزن دهی TF-IDF نیز شناسایی و گزارش شد. موضوعات نوظهور با توجه به رشد میانگین وزنی، شناسایی شدند.
یافته هاتحلیل داده ها حاکی از آن است که “covid”، “infect” و “cell” از مهم ترین واژگان بکار رفته در انتشارات بین المللی COVID-19 و “patient”، “SARS-Cov” و “covid” مهم ترین واژگان انتشارات ملی هستند.
نتیجه گیریدر خصوص روند تغییرات واژگان مورد استفاده در انتشارات COVID-19 از مهمترین نتایجی که میتوان استنباط نمود تفاوت اساسی بین مهمترین واژه های انتشارات بین المللی با ملی و تاکید پژوهش های بین الملل بر کرونا و عفونت ناشی از آن و در سطح ملی بر بیماران و کرونا است. نتیجه مهم دیگر تغییرات سالانه بوجود آمده در واژه ها در سطح انتشارات ملی و بین المللی است. شایان ذکر است که تغییرات واژه ها به خصوص در انتشارات ملی و بین المللی همراستا با اتفاقات و رویدادهای مهم علمی است.
کلید واژگان: کووید-19, متن کاوی, فراوانی وزنی تی اف-آی دی اف, طبقه بندی, خوشه بندی, موضوعات نوپدید, پایتونBackground and AimThe results from the analysis of COVID-19 literature by employing text-mining techniques are of particular importance for researchers, policymakers, and planners of medical sciences at the national and international levels, avoiding parallel research and waste of time and budget. The paper explore emerging topics and the trend of scientific words at the national and international levels in the subject area of COVID-19.
Materials and MethodsThis applied research was conducted by employing the text-mining and its related algorithms and classifying texts. The population consists of all COVID-19 articles indexed in PubMed Central® (PMC). The number of records retrieved was 160,862 items until June 10, 2021. Among these, 3143 national and 157,719 international COVID-19 articles. Python and its related libraries were applied. The most significant words were also identified and reported based on TF-IDF weighting. Emerging topics were identified according to the weighted average growth.
Results"COVID", "infect", and "cell" were among the most important words used in international COVID-19 articles. In addition, the most important words in the national COVID-19 articles were "patient", "SARS-Cov", and "COVID".
ConclusionAmong the most important conclusions that can be inferred from the trend of word change used in the COVID-19 literature is that the most significant words in international literature differ significantly from those in national literature, as international research focuses on COVID-19 and the infections caused by it. In contrast, national research focuses on COVID-19 and patients. Another significant result is the annual word-changing national and international literature.
Keywords: Covid-19, Text Mining, TF-IDF, Classification, Clustering, Emerging Topics, Python -
Introduction
Dementia is a common medical condition of older people which is marked by the decline of multiple cognitive abilities, such as memory and communication. Currently, there is no effective treatment for curing dementia, making prevention the most priority to this disease. Previous studies showed that cognitive ability training, such as mathematical problem solving, has a potential to slow down cognitive decline. The aim of this project is to create a simple yet interactive mathematical quiz as a way to train one’ cognitive ability and reduce the risk of getting dementia.
Material and MethodsThe quiz was created by using tkinter module and its built-in functions in Python programming language.
ResultsThe result showed that the quiz was simple but involved an active role of the user to input the answer. It also did not have certain time limit, preventing the user to feel rushed or burdened in doing the quiz. In addition, three different types of difficulty were provided to give a challenging atmosphere to the game.
ConclusionAs a conclusion, this quiz provides a simple way for people to regularly train their cognitive skill, so the risk of getting dementia, especially in elderly stage, can be reduced.
Keywords: Dementia, Prevention, Python, Tkinter
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.