Landslide susceptibility assessment using a novel ensemble algorithm based model (Case Study: Kamyaran city, Kurdistan province)

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:

Landslides are considered one of the most destructive natural phenomena. Landslides are dangerous natural hazards. Because of their threat, a comprehensive landslide susceptibility map should be produced to reduce the possible damages to people and infrastructure. The quality of landslide susceptibility maps is influenced by many factors, such as the quality of input data and the selection of mathematical models. The main purpose of this study is to presentation, a novel hybrid model namely Rotation Forest based Functional Trees (RFFT), which is a hybrid intelligent approach of two state of the art machine learning techniques of Functional Trees (FT) classifier and Rotation Forest (RF) ensemble, for landslide susceptibility Assessment prediction in Kamyaran city located in Kurdistan Province, Iran. At first, twenty-one factors affecting the occurrence of landslide in the study area including Slope angle, Aspect, Elevation, Curvature, Plan curvature, Profile curvature, Radiation, Valle depth(VD), stream power index (SPI), topographic wetness index (TWI), combination of length-angle of slope (LS), Land use, NDVI (normalized vegetation index), Distance to Faults, Faults density, Distance to Road, Road density, Distance to River, River density Lithology and Rainfall with total of 60 landslide locations have been collected for generating training and testing datasets. Then, based on the Information Gain Ratio Index, eight effective factors were chosen and used for modeling. Performance of the proposed RFFT model was evaluated using some statistical-based measures such as sensitivity, specificity, accuracy, RMSE and area under the ROC curve (AUROC). The results showed that the proposed model performed well in this study (AUC = 0.891), and it improved significantly the performance of the FT base classifier (AUC = 0.819). Therefore, it can be concluded that the proposed RFFT model should be used as a great alternative method for better landslide susceptibility assessment in landslide prone area.Landslides are considered one of the most destructive natural phenomena. Landslides are dangerous natural hazards. Because of their threat, a comprehensive landslide susceptibility map should be produced to reduce the possible damages to people and infrastructure. The quality of landslide susceptibility maps is influenced by many factors, such as the quality of input data and the selection of mathematical models. The main purpose of this study is to presentation, a novel hybrid model namely Rotation Forest based Functional Trees (RFFT), which is a hybrid intelligent approach of two state of the art machine learning techniques of Functional Trees (FT) classifier and Rotation Forest (RF) ensemble, for landslide susceptibility Assessment prediction in Kamyaran city located in Kurdistan Province, Iran. At first, twenty-one factors affecting the occurrence of landslide in the study area including Slope angle, Aspect, Elevation, Curvature, Plan curvature, Profile curvature, Radiation, Valle depth(VD), stream power index (SPI), topographic wetness index (TWI), combination of length-angle of slope (LS), Land use, NDVI (normalized vegetation index), Distance to Faults, Faults density, Distance to Road, Road density, Distance to River, River density Lithology and Rainfall with total of 60 landslide locations have been collected for generating training and testing datasets. Then, based on the Information Gain Ratio Index, eight effective factors were chosen and used for modeling. Performance of the proposed RFFT model was evaluated using some statistical-based measures such as sensitivity, specificity, accuracy, RMSE and area under the ROC curve (AUROC). The results showed that the proposed model performed well in this study (AUC = 0.891), and it improved significantly the performance of the FT base classifier (AUC = 0.819). Therefore, it can be concluded that the proposed RFFT model should be used as a great alternative method for better landslide susceptibility assessment in landslide prone area.Landslides are considered one of the most destructive natural phenomena. Landslides are dangerous natural hazards. Because of their threat, a comprehensive landslide susceptibility map should be produced to reduce the possible damages to people and infrastructure. The quality of landslide susceptibility maps is influenced by many factors, such as the quality of input data and the selection of mathematical models. The main purpose of this study is to presentation, a novel hybrid model namely Rotation Forest based Functional Trees (RFFT), which is a hybrid intelligent approach of two state of the art machine learning techniques of Functional Trees (FT) classifier and Rotation Forest (RF) ensemble, for landslide susceptibility Assessment prediction in Kamyaran city located in Kurdistan Province, Iran. At first, twenty-one factors affecting the occurrence of landslide in the study area including Slope angle, Aspect, Elevation, Curvature, Plan curvature, Profile curvature, Radiation, Valle depth(VD), stream power index (SPI), topographic wetness index (TWI), combination of length-angle of slope (LS), Land use, NDVI (normalized vegetation index), Distance to Faults, Faults density, Distance to Road, Road density, Distance to River, River density Lithology and Rainfall with total of 60 landslide locations have been collected for generating training and testing datasets. Then, based on the Information Gain Ratio Index, eight effective factors were chosen and used for modeling. Performance of the proposed RFFT model was evaluated using some statistical-based measures such as sensitivity, specificity, accuracy, RMSE and area under the ROC curve (AUROC). The results showed that the proposed model performed well in this study (AUC = 0.891), and it improved significantly the performance of the FT base classifier (AUC = 0.819). Therefore, it can be concluded that the proposed RFFT model should be used as a great alternative method for better landslide susceptibility assessment in landslide prone area.

Language:
Persian
Published:
quantitative geomorphological researches, Volume:9 Issue: 4, 2021
Pages:
130 to 146
https://magiran.com/p2292327  
مقالات دیگری از این نویسنده (گان)