Ground-displacement monitoring and geomorphological effects analysis using remote sensing data

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and Objective

An earthquake is one of the most important natural events that cause a lot of financial and human losses every year around the world. An earthquake is an earthquake caused by the rapid release of energy, which often occurs due to landslides along a fault in the earth's crust. Earthquakes cause many geological-geotechnical instabilities such as multiple rockfalls, soil and rock landslides, runoff and mud flow, subsidence limestone caves, liquefaction, and expansion rupture. One of the most important effects of an earthquake is the displacement of the earth and the resulting morphological changes. Estimating the rate of land displacement and monitoring the morphological changes of this phenomenon in order to manage the crisis is one of the basic measures after the earthquake. In recent decades, extensive efforts have been made to monitor changes and displacements of the Earth's crust. With accurate alignment and ground observations, changes can be measured with great accuracy, which ground measurements are costly and can be measured sporadically. The use of remote sensing technology in the various earth sciences is very common due to the wide coverage of satellite images, the timeliness of the images, and its low cost compared to terrestrial methods. One of the applications of measurement is to show and control the movements of the earth's crust due to factors such as earthquake, drift, subsidence. The use of radar, satellite images, and radar interferometry methods, due to extensive coverage and periodic imaging and with an accuracy of about cm, is a good tool to monitor changes in the Earth's crust. Satellite imagery of the Sentinel-1 satellite system, which has been made available to the public free of charge by the European Space Agency since 2014 and is currently being continuously imaged, is a good tool for earthquake monitoring. A radar imaging technique is a new tool used for the discovery and display of land subsidence.  In the present perusal, in order to achieve the above purpose, using satellite data and radar interferometry technique, the deformation of the earth's crust due to post-seismic movements in Sarpolzahab city has been investigated. 

Materials and Methods 

In this paper, using radar imagery, the deformation field due to the seismic dimension of the county is obtained from 11/ 11/ 2017 to 17/11/2017 using radar data (S _ 1 A - IW), with a baseline of 100 m.

Results and Discussion

Examination of the results of deformation of the earth's crust after an earthquake shows; The highest rate of land subsidence in the north, northwest of Sarpol-e-Zahab city (about 90 cm vertical displacements of the earth's crust) to the west, and land elevation around the epicenter (north of the herd), about 30 cm vertical displacements of the earth's crust (towards Darbandi Khan) It has happened. The effects of subsidence and uplift caused by the earthquake in the study area in addition to morphological changes in the area have also affected the hydrology of water resources in the area. For example, earthquakes have caused significant changes in the volume of water in the Strait of Hammam dam and increased the volume of water resources in the Sirvan river.

Conclusion

The results of this study showed that the use of radar interferometry technique, in addition to being an efficient tool in estimating the rate of crustal displacement, can be used in relatively accurate estimation of quantitative changes in water resources resulting from crustal displacement.

Language:
Persian
Published:
Journal of Rs and Gis for natural Resources, Volume:12 Issue: 4, 2021
Pages:
95 to 118
https://magiran.com/p2342790  
مقالات دیگری از این نویسنده (گان)