پیش بینی مقاومت مارشال آسفالت با استفاده از الگوریتم های یادگیری ماشین نظارت شده ماشین بردار پشتیبان و جنگل تصادفی
نویسنده:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
سازمان های مسیول ساخت و نگهداری راه ها معمولا از برخی معیارها برای واجد شرایط بودن مخلوط های آسفالتی قبل از استفاده در ساخت وساز استفاده می کنند. یکی از مهم ترین ویژگی هایی که در طرح اختلاط و کنترل کیفی آسفالت سنجیده می شود مقاومت مارشال آسفالت می باشد. این مطالعه استفاده از روش های یادگیری ماشین را برای پیش بینی مقاومت مارشال آسفالت را بررسی می کند. با توجه به زمان بر بودن و هزینه بر بودن فرایند تولید و کنترل کیفی آسفالت، استفاده از روش های نوین در این فرایند ضرورت دارد. در این پژوهش از دو الگوریتم نظارت شده ماشین بردار پشتیبان و جنگل تصادفی که از الگوریتم های یادگیری ماشین محسوب می شوند به منظور پیش بینی مقاومت مارشال آسفالت استفاده شد. برای این منظور، نتایج آزمایشات 2000 نمونه آسفالت کارخانه آسفالت سازمان عمران شهرداری مشهد شامل دانه بندی مصالح، درصد شکستگی مصالح، درصد جذب قیر، وزن مخصوص قیر، وزن مخصوص حقیقی مصالح، درصد قیر مصرفی، نسبت درصد وزنی فیلر به قیر موثر و مقاومت مارشال آسفالت برای آموزش و ارزیابی مدل ها بکاررفته است. پس ساخت مدل و ارزیابی آن ها، مقدار R2 برای روش ماشین بردار پشتیبان برابر 5/87 و برای جنگل تصادفی 69/82 به دست آمده است. همچنین مقادیر MAPE، RMES و SDE برای SVM به ترتیب معادل 1073/3، 042/40 و 0208/0 و برای RF به ترتیب معادل 1641/3، 870/41 و 0211/0 محاسبه گشت. نتایج حاصله نشان دهنده کارآمدی مدل های استفاده شده در برابر روش های آزمایشگاهی برای پیش بینی مقاومت مارشال آسفالت است که روش SVM عملکرد مطلوب تری را نسبت به RF داراست. از روش های یادگیری ماشین می توان برای پیش بینی سایر پارامترهای طرح اختلاط آسفالت استفاده و زمان، هزینه و خطای انسانی آزمایشات را کاهش داد.
کلیدواژگان:
زبان:
فارسی
صفحات:
249 تا 262
لینک کوتاه:
https://www.magiran.com/p2600049
مقالات دیگری از این نویسنده (گان)
-
ساخت مدل تحلیلی به منظور پیش بینی زاویه فاز (δ) در آزمایش رئومتر برشی دینامیکی (DSR)
*، سینا آرمان، بهنام خیاط
پژوهشنامه حمل و نقل، تابستان 1403