Effect of Using Astaxanthin from Haematococcus pluvialis as Free Form and as a Carrier Nanocapsules in Formulation of Tomato Paste and Evaluating Microbial and Qualitative Characteristics of the Product During Storage at Refrigerator

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

 Since heat treatments and special standards are not used in the production of traditional (homemade) tomato paste, fungal and bacterial spoilage in the product occurs extensively during storage in the refrigerator (4°C). Astaxanthin extracted from aquatics has antimicrobial activity and color similar to tomato and can probably be effective in preventing spoilage of tomato paste. In addition, astaxanthin has other properties in the field of preventing and controlling diseases and maintaining human health, which justifies its use in food formulations as an enrichment. Since heat, enzyme, acid, etc. treatments are practiced during the production of tomato paste, these factors may change the structure and thus the function of astaxanthin. For this reason, astaxanthin nanoencapsulation is necessary for its use in tomato paste formulation. 

Materials and Methods

 In this research, first, astaxanthin was extracted from Haematococcus pluvialis microalgae using the acid-acetone combined method. Then, this pigment was nanoencapsulated using maltodextrin-sodium caseinate coating and the resulting nanocapsules were used together with the pure form of astaxanthin in the formulation of tomato paste. The research treatments were control, tomato pastes containing 3 and 6% astaxanthin (A and B, respectively) and also 3, 6 and 9% nanocapsules carrying the pigment (C, D and E, respectively). These treatments were kept at refrigerator for 28 days and were evaluated (on days 0, 7, 14, 21 and 28) in terms of the total number of fungi, Howard's number (HMC), pH, fungal flora, total bacteria count, amount of lactic acid bacteria and sensory properties. This research was conducted in a completely randomized design. Data were analyzed by One-way Anova and the difference between the means was evaluated by Duncan's test at 95% confidence level.   

Results and Discussion

 The results showed that the fungi proliferation, total count and lactic acid bacteria were slower than the control during the storage period in the treatments containing astaxanthin and its carrying nanocapsules, and the minimum number of the mentioned microorganisms and Howard's number were related to treatments D and E (p>0.05). Treatments C, B and A were ranked next in this respect (p<0.05). The number of fungi in two treatments D and E from day 0 to 28 varied from 128 to 332 cfu/gr. Also, the Howard number of these treatments was recorded from 18 to 34% in the mentioned time period. However, these two indices in the control ranged from 121 to 792 cfu/gr and 18 to 91%, respectively, during the storage period. The count of total bacteria and the amount of lactic acid bacteria in the control on day 28 were equal to 8.9 cfu/gr and 311 mg/kg, respectively, but these two values were recorded in the E and D treatments on the same day, about 4.8 cfu/gr and 110 mg/kg, respectively. Counting the total number of fungi, bacterias and also Howard's number in control and other treatments showed that the effect of nanocapsules carrying astaxanthin on microbial growth and proliferation is significantly greater than pure astaxanthin (p<0.05). The pH of the treatments varied from 3.9 to 5.8 during the storage period and the most standardized pH (3.9-4.4) was recorded in C, D and E (p>0.05) treatments (p<0.05). The pH of two treatments A and B (p>0.05) was higher than the three mentioned treatments and lower than the control (p<0.05). This finding showed that nanocapsules carrying astaxanthin have a greater effect on controlling the pH of tomato paste than pure astaxanthin during storage at refrigerator (p<0.05). The identification of the fungal flora of the treatments on the 28th day confirmed that two genus of Penicillium and Aspergillus form the main flora of the product. The results of the sensory evaluation of the treatments on day 0 showed that adding astaxanthin and its carrier nanocapsules does not change the color, aroma, taste and texture indicators (subsequently the general acceptance) of tomato paste (p>0.05). On the 28th day, the mentioned sensory indices only in the two treatments D and E were not significantly different from the 0 day, but they changed negatively in the other treatments (p<0.05). 

Conclusion

 According to the findings of the present research, astaxanthin extracted from Haematococcus pluvialis microalgae has the ability to inhibit fungal and bacterial spoilage and stabilize the sensory properties of tomato paste stored at refrigerator. This properties were improved by adding nanoencapsulated pigment using maltodextrin-sodium caseinate combined coating. Since there were no significant differences between the two treatments containing 6% and 9% of nanocapsules carrying astaxanthin (D and E) in terms of quality indices and microbial spoilage, therefore, the treatment containing 6% nanocapsules is introduced as the optimal treatment.

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:20 Issue: 1, 2024
Pages:
101 to 117
https://magiran.com/p2701003