بهینه سازی نتایج الگوریتم ML-Based GMDH به منظور افزایش دقت تشخیص گردوغبار و عمق دید افقی ازطریق الگوریتم TLBO
کیفیت هوای پاک، به منزله یکی از ضروریترین نیازهای موجودات زنده، براثر فعالیتهای طبیعی و انسانی به مخاطره افتاده است. در سال های اخیر، طوفان های گردوغبار ازلحاظ مکانی و زمانی همواره درحال افزیش بوده و سبب آسیب های بی شمار درحوزه سلامت اجتماعی، اقتصادی و زیست محیطی، برای ساکنان مناطق جنوب و جنوبغرب ایران، شده است. در پژوهش حاضر، به منظور بررسی طوفان های گردوغبار و تشخیص عمق دید افقی، دادههای سنجنده مادیس به کار رفته است.
از مزایای دادههای سنجنده مادیس میتوان به توان تفکیک طیفی و زمانی بالا اشاره کرد. همچنین دادههای ایستگاه های هواشناسی با توجه به بازه زمانی مورد مطالعه جمع آوری شده است. پس از پیشپردازش دادهها و آماده سازی مشاهدات میدانی، به منظور استخراج ویژگیهای مورد نیاز برای انجام دادن مدلسازیها، ازطریق روش تفاضلی بین باندهای منتخب هر تصویر داده های سنجنده مادیس، به همراه ویژگی های استخراج شده از سنسورهای ایستگاه های هواشناسی زمینی استفاده شده است. با بررسی های بیشتر و ارزیابی های صورت گرفته و استفاده از دیدگاه های خبرگان هواشناسی، 36 ویژگی تفاضلی از باندهای گوناگون تصاویر مادیس و شش ویژگی از داده های ایستگاه های هواشناسی زمینی، یعنی درمجموع 42 ویژگی، استخراج شده است. در ادامه، ازطریق تکنیک های انتخاب ویژگی، بهترین ویژگی ها شناسایی و با به کارگیری روشی جدید با نام ML-Based GMDH، که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، برای تشخیص غلظت گردوغبار و دید افقی استفاده شد. برای دستیابی به دقت مناسب نیز ابرپارامترهای این مدل به صورت ابتکاری، با استفاده از الگوریتم بهینه سازی TLBO، تنظیم شدند. در ادامه، روش های یادگیری ماشین Basic GMDH SVM، MLP، MLR، RF و مدل گروهی آنها نیز، برای مقایسه با رویکرد اصلی، اجرایی شد؛ طبق نتایج، روش ML-Based GMDH تنظیم شده با TLBOبا ایجاد بهبود درقیاس با روشهای یادگیری ماشین ذکرشده، دقت بهتری را در تشخیص غلظت گردوغبار فراهم کرده است.
نتایج و بحث:
روش SVM-PSO به منزله روش برتر در مرحله انتخاب ویژگی، روش RF به منزله روش برتر در میان روشهای پایه دسته بندی و روشهای Ensemble SVM و Ensemble RF به منزله روشهای برتر در مرحله گروهی و دسته بندی انتخاب شدند. همچنین مشاهده شد، با استفاده از رویکرد گروهی، بهبود مطلوبی در تشخیص دسته دید افقی پدید آمد. در رویکرد دوم، روشی با عنوان ML-Based GMDH که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است، استفاده شد که کاربرد آن در تقریب غلظت گردوغبار است. همچنین، برای دستیابی به دقت مناسب، ابرپارامترهای این مدل با الگوریتم بهینه سازی TLBO با دقت بسیار بالا تنظیم شدند. نتایج حاصل نشان دادند این روش، با ایجاد بهبود درمقایسه با بهترین روشهای انتخابی از رویکرد اول، دقت مناسبی را در تقریب غلظت گردوغبار و عمق دید افقی فراهم کرده است.
-
A Comparative Study of the Usability of Academic Social Networks
Mohammadhosein Hayavihaghighi, Mohammadhossein Pourasad, Mohammad Dehghani *
Journal of Clinical Research in Paramedical Sciences, Jun 2024 -
Future-Oriented Policy Making in Oil Exploration and Extraction Using a System Dynamics Approach
*
Journal of Systems Thinking in Practice, Summer 2024 -
Development of two mathematical models for age-based maintenance policies of production systems with different operational states
Hasan Rasay *,
Journal of Industrial Engineering and Management Studies, Winter-Spring 2024 -
Exploring Common Symptoms in Patients with Respiratory Allergies Using K-Means Algorithm in the North-East of Iran in 2012–2015
Somaye Norouzi, Samane Sistani, Maryam Khoshkhui, Reza Faridhosseini, Payam Payandeh, Fahimeh Ghasemian, Leila Ahmadian, Mohammadhosein Pourasad, Farahzad Jabbari Azad *
Tanaffos Respiration Journal, Winter 2023 -
بهبود ادغام تصاویر چندتمرکزی با لحاظ اطلاعات فاز تبدیل فوریه
*، عاطفه عصمتی
مجله مهندسی برق و الکترونیک ایران، تابستان 1401 -
Indoor Localization Performance Optimization Using Modified kd-Tree Algorithm
Hossein Ghaffarian *, , Seyedeh Habibe Zadsar
Journal of Computing and Security, Summer and Autumn 2022