-
مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران، سال هشتاد و یکم شماره 12 (پیاپی 275، اسفند 1402)، صص 929 -943
بیش از نیم قرن است که از سیمان های استخوانی جهت محکم شدن مفاصل مصنوعی استفاده می شود. نقش اولیه سیمان استخوان پر کردن فضای آزاد بین پروتز و استخوان است که با ایجاد یک ناحیه الاستیک نیروهای وارد بر مفصل را جذب می کند. این امر علاوه بر تضمین پایداری ایمپلنت مصنوعی، بهبود استخوان آسیب دیده را نیز به همراه دارد. سیمان های استخوانی پلیمری از یک ماتریکس پلیمری به نام پلی متیل متاکریلات (PMMA) و یک مونومر مایع به نام متیل متاکریلات (MMA) تشکیل شده اند، در اثر ترکیب این دو جزء با هم واکنش پلیمریزاسیون رادیکال آزاد رخ می دهد و منجر به سخت شدن سیمان می گردد. خواص سیمان های استخوانی از جمله استحکام مکانیکی، زیست سازگاری و ویژگی های جابه جایی را می توان با ترکیب پارامترهای موثر در پلیمریزاسیون تنظیم کرد. سیمان های استخوانی سرامیکی، از ذرات سرامیکی مانند کلسیم فسفات و کلسیم سولفات تشکیل شده اند که در یک ماتریکس پلیمری پراکنده اند. ذرات سرامیکی استحکام مکانیکی و زیست فعالی را فراهم می کنند، درحالی که ماتریکس پلیمری خواص حمل ونقل سیمان را افزایش می دهد. ترکیب این مواد امکان ایجاد سیمانی را فراهم می کند که زیست سازگار، رسانای استخوانی و از نظر مکانیکی پایدار باشند. با پیشرفت مداوم در مواد زیستی، سیمان های استخوان سرامیکی و پلیمری می توانند انقلابی در زمینه جراحی ارتوپدی ایجاد کنند و نتایج عملکردی بیماران را بهبود بخشند. اخیرا، محققان جهت افزایش عملکرد سیمان های استخوانی و رفع محدودیت های فعلی در کاربردهای ارتوپدی، روی توسعه سیمان های استخوانی جدید با خواص بهبودیافته، مانند زیست فعالی، فعالیت ضدباکتریایی و قابلیت های انتقال دارو تمرکز کرده اند. در مطالعه پیش رو، به تفضیل به جزییات انواع سیمان های استخوانی، خواص مکانیکی، بیولوژیکی، ساختاری و نحوه ی بهینه سازی آنها می پردازیم.
کلید واژگان: سیمان استخوانی, سیمان های استخوانی بر پایه سرامیک, جراحی ارتوپدی, سیمان های استخوانی برپایه پلیمرFor over 50 years, bone cement has been used to strengthen artificial joints like hip, knee, shoulder, and elbow joints. The main purpose of bone cement is to fill the space between the prosthesis and the bone. This absorbs the forces on the joint by creating an elastic area. Besides ensuring the long-term stability of the artificial implant, it also improves the damaged bone. Polymeric bone cement consists of a polymer matrix known as polymethyl methacrylate (PMMA) and a liquid monomer called methyl methacrylate (MMA). When these two components are mixed, a free radical polymerization reaction occurs, leading to the cement's hardening at the place of use. The properties of bone cement, such as mechanical strength, biocompatibility, and handling characteristics, can be adjusted by combining the effective polymerization parameters. However, there are some challenges, such as heat generation during polymerization.
Ceramic bone cement is a composite material of ceramic particles dispersed in a polymer matrix, including calcium phosphate and calcium sulfate. The ceramic particles provide strength and bioactivity, while the polymer matrix enhances the transport properties of the cement. This combination results in a mechanically stable, bone-conductive, and biocompatible cement. Moreover, ceramic bone cement can be engineered to release therapeutic agents, such as antibiotics or growth factors, to prevent infection and foster bone regeneration. Ceramic bone cement is a promising alternative material for bone cement in joint replacement. However, more research and development are required to optimize the properties of bone cement and overcome the challenges associated with its use. With continued advancements in biomaterials, ceramic and polymer bone cement could revolutionize the field of orthopedic surgery and improve patient outcomes. Recent research has focused on developing new bone cement with improved properties like bioactivity, antibacterial activity, and drug delivery capabilities. These developments aim to enhance the performance of bone cement and remove the current limitations in orthopedic applications. In this review study, we will focus on the types of bone cement, their mechanical, biological, and structural properties, and how to optimize them.Keywords: Bone Cement, Ceramic-Based Bone Cements, Orthopedic Surgery, Polymer-Based Bone Cements -
سیمانهای استخوانی عامل تثبیت پروتز و پرکننده استخوانی در جراحی های ارتوپدی می باشند. سیمانهای پلیمری پلی متیل متا اکریلاتی (PMMA) مهمترین این مواد می باشند. با وجود کثرت استفاده از این سیمانها، مشکلات زیستی فراوانی در ارتباط با این مواد وجود دارد، از این رو تحقیقات زیادی برای ساخت سیمانهای استخوانی با سازگاری زیستی مناسبتر انجام شد. سیمانهای استخوانی کلسیم فسفاتی بهترین جایگزین بافت سخت می باشند. کلسیم فسفاتها ترکیباتی هستند که توسط بدن در فرآیند استخوان سازی مورد استفاده قرار می گیرند. این مواد در شکلهای مختلفی نظیر بلوکهای متخلخل یا متراکم، ذرات یا گرانول و سیمان به عنوان جایگزین بافت استخوانی مورد استفاده قرار می گیرند. سیمانهای کلسیم فسفاتی از دو قسمت پودری و مایع تشکیل شده اند و پس از اختلاط با یکدیگر به صورت خمیر هموژنی در می آیند که در دمای اتاق و بدن سفت می شوند. این سیمانها در هنگام کاربرد به صورت خمیر سیمانی، امکان پرکردن کامل هرگونه ضایعه استخوانی را فراهم می آورند، اما به علت عدم استحکام کافی جهت کاربردهای متحمل بار، مناسب نمی باشند. این تحقیق، مروری بر ساخت و بررسی خواص کاربردی سیمان استخوانی کلسیم فسفاتی جهت کاربردهای مختلف کلینیکی می باشد.
کلید واژگان: سیمان استخوان, کلسیم فسفات, مهندسی بافت استخوانBone cements are used both as stabilizing prosthesis and bone filler in orthopedic surgeries. Among the most important of such materials are polymethyl methacrylate (PMMA) cements, which have great and multiple applications. But many environmental problems are encountered with these cements and therefore these related researches are stimulated toward environmentally compatible bone cements. Calcium phosphate bone cements can be considered the best substitute for hard tissues. Calcium phosphates are used by our body to build bones. These materials have been developed in different forms; porous or dense blocks, particles or granules and cements as a bone tissue substitute. Calcium phosphate cements consists of two parts: a powder and an aqueous liquid, which are mixed to the form of homogeneity paste that sets at room and body temperature. Being handle as paste, these cements allow perfect filling of bone defect regardless the shape of the defect, but calcium phosphate cements are still not strong enough for load-bearing bone repair. This study deals with product and evaluation of application properties of calcium phosphate bone cement for clinical various applications. -
Periprosthetic joint infection (PJI) is a critical complication following arthroplasties, often treated with a two-stage revision using antibiotic-loaded bone cement spacers. Although these spacers can effectively manage infections, they occasionally cause severe adverse reactions. We reported the case of a 68-year-old female who developed vancomycin flushing syndrome (VFS), previously known as the red man syndrome, following the insertion of a vancomycin-loaded bone cement spacer during the firststage revision surgery for PJI after undergoing total knee arthroplasty. Six hours postoperatively, she developed pruritus, diffuse rash, tachycardia, and hypotension. VFS was diagnosed based on clinical presentation after excluding other potential causes. She was treated with intravenous epinephrine, antihistamines, steroids, and fluid resuscitation without requiring spacer removal. The patient recovered uneventfully, underwent second-stage reimplantation after 6 weeks, and remained asymptomatic at 2-year follow-up. This highlights the importance of anticipating and managing this potentially severe reaction through a multidisciplinary approach, considering the risks and benefits of retaining versus removing antibiotic-loaded bone-cement spacers. Level of evidence: IV
Keywords: Antibiotic Cement, Periprosthetic Joint Infections, Total Knee Arthroplasty, Two-Stage Revision, Vancomycin, Vancomycin Flushing Syndrome -
ObjectiveThe aim of this study was to evaluate the efficacy of antibiotic-loaded bone cement in controlling local infection and in regard to its physical characteristics, elastic modulus, and tensile strength in-vitro.MethodsAcrylic bone cement, based on polymethylmethacrylate (PMMA) was mixed with the powder form of three antibiotics, i.e., gentamicin, tobramycin, and cefuroxime with different doses below 2gr per 40gr of cement powder; thereafter, liquid monomer was added to process the cement. Sensitivity to common clinical isolates was assessed by counting the inhibition zone of each ALBC disc in cultured strains. Elution with normal saline was performed to evaluate the effects on ALBC disks and their antimicrobial efficiency. Cement structure, tensile strength, and elastic modulus were assessed by biomechanical tests to understand the characteristics of ALBCs after loading antibiotics with different doses and two methods of vacuum and manual mixing.ResultsGentamicin, tobramycin, and cefuroxime reduced bacterial growth significantly with doses more than 1gr of antibiotics in 40gr of the cement. Cefuroxime was less efficient than the other two antibiotics in controlling pseudomonas. Elution with normal saline has not affected antibacterial results, significantly. All the 3 antibiotics had the same pattern of physical characteristics while loaded in bone cement. Gross structure of ALBCs with different doses of the three antibiotics was the same as non-ALBC and the elasticity or strength did not decline after loading antibiotics. The elastic modulus of ALBC was increased by boosting the doses of antibiotics; however, doses of 1gr to 1.5gr were the optimal doses in this regard. The tensile strength of ALBC was increased by doses of 1gr to 1.5gr of antibiotics; however, below and above these doses, the strength was decreased, but it did not exceed the basic strength of non-ALBC. Vacuum mixing method increased strength and elasticity more than manual one, remarkably.ConclusionOptimal protective effects of ALBCs against infection could be seen with mixing doses of about 1gr to 1.5gr of antibiotics in 40gr of acrylic bone cements by vacuum method, while optimal elastic modulus and tensile strength could be achieved at the same doses.
-
BackgroundPercutaneous vertebroplasty employs bone cement for injecting into the fractured vertebral body (VB) caused by spinal metastases. Radioactive bone cement and also brachytherapy seeds have been utilized to suppress the tumor growth in the VB.ObjectiveThis study aims to investigate the dose distributions of low-energy brachytherapy seeds, and to compare them to those of radioactive bone cement, by Monte Carlo simulation.Material and MethodsIn this simulation study, nine CT scan images were imported in Geant4. For the simulation of brachytherapy, I-125, Cs-131, or Pd-103 seeds were positioned in the VB, and for the simulation of vertebroplasty, the VB was filled by a radioactive cement loaded by P-32, Ho-166, Y-90, or Sm-153 radioisotopes. The dose-volume histograms of the VB, and the spinal cord (SC) were obtained after segmentation, considering that the reference dose is the minimum dose covered 95% of the VB.ResultsThe SC sparing was improved by using beta-emitting cement because of their steep gradient dose distribution. I-125 seeds and Y-90 radioisotope showed better VB coverage for brachytherapy and vertebroplasty techniques, respectively. Pd-103 seeds and P-32 radioisotope showed better SC sparing for brachytherapy and vertebroplasty, respectively. The minimum mean doses that covered 100% of the VB were 62.0%, 56.5%, and 45.0% for I-125, Cs-131, and Pd-103 seeds, and 28.3%, 28.6%, 32.9%, and 17.7%, for P-32, Ho-166, Y-90, and Sm-153 sources, respectively.ConclusionI-125 and Cs-131 seeds may be useful for large tumors filling the entire VB, and also for the extended tumors invading multiple vertebrae. Beta-emitting bone cement is recommended for tumors located near the SC.Keywords: Percutaneous Vertebroplasty, Brachytherapy, Bone Cement, Spinal Metastasis, Vertebral Body, Spinal cord, Dosimetry, Monte Carlo
-
The Most Appropriate Reconstruction Method Following Giant Cell Tumor Curettage: A Biomechanical Approach
Giant cell tumor (GCT) is a primary and benign tumor of bone, albeit locally aggressive in some cases, such as in the epi-metaphyseal region of long bones, predominantly the distal end of femur and proximal end of tibia (1). There are a variety of treatments for a bone affected by GCT, ranging from chemotherapy, radiotherapy, embolization, and cryosurgery, to surgery with the use of chemical or thermal adjuvant (2). Even with advances in new chemotropic drugs, surgery is still the most effective treatment for this kind of tumor (3). The surgery often involves defect reconstruction following tumor removal (4). The aims of treatment are removing the tumor and reconstructing the bone defect in order to decrease the risk of recurrence, and restore limb function, respectively. To achieve these goals, reconstruction is usually accompanied with PMMA bone cement infilling (4). The high heat generated during PMMA polymerization in the body can kill the remaining cancer cells, and hence the chance of recurrence decreases (5). In addition, filling the cavity with bone cement provides immediate stability, enabling patients to return to their daily activities soon (6).
The major drawbacks of the technique of curettage and cementation is the high fracture risk, due to the early loading of the bone, and the insufficient fixation of the cement in the cavity (7). Hence, several methods have been developed to fix the bone cement in order to prevent the postoperative fracture. Pattijn et.al packed the cement with a titanium membrane which was attached to the periosteum with small screws (7). The membrane can make early normal functioning of patients possible, since it partially restore the strength and stiffness of the bone. Cement augmentation with internal fixation is another method to decrease the risk of postoperative fractures (6, 8, 9).Keywords: Giant cell tumor, orthopedic biomechanics, finite element method -
در این تحقیق اثر غلظت های مختلف NaH2PO4.2H2O بر زمان گیرش و استحکام فشاری سیمان استخوانی بر پایه هیدروکسی آپاتیت بررسی شد. سیمان هیدروکسی آپاتیت دسته ای از سیمان های استخوانی کلسیم فسفاتی است که می تواند به عنوان جایگزین بافتهای سخت مطرح شود. قسمت پودری این سیمان از ترکیبات مختلف کلسیم فسفاتی نظیر تری کلسیم فسفات (TCP)، کربنات کلسیم(CaCO3) و مونتیت (CaHPO4) تهیه شد و فاز مایع آن نیز غلظت های مختلفی از سدیم دی هیدرژن فسفات را شامل گردید. زمان های گیرش اولیه و نهایی و استحکام فشاری سیمان در نسبت های مختلفی از فاز مایع به جامد L/P(ml/g) بررسی شد. نتایج به دست آمده بیانگر آن است که در غلظت های معینی از فاز مایع، این سیمان از شرایط بالقوه ای برای کاربردهای پزشکی برخوردار است.
کلید واژگان: مهندسی بافت استخوان, سیمان استخوان, هیدروکسی آپاتیت, Nah2po4, 2h2o, زمان گیرش, استحکام فشاریIn this research, the influence of NaH2PO4.2H2O with different concentrations on setting time and compressive strength of bone cement based on hydroxyapatite was investigated. Hydroxyapatite cement is of calcium phosphate bone cements, which can be considered as the best substitute for hard tissues. The powder phase of the cement was prepared from various compositions of calcium phosphates such: tricalcium phosphate (TCP), calcium carbonate (CaCO3) and montite (CaHPO4) as constant and the liquid part using NaH2PO4.2H2O solution with different concentrations. The influences of liquid/powder ratio L/P (ml/g) was investigated on the initial and final setting times and compressive strengths of the cement. According to the obtained results, with optimum concentrations of the liquid phase, this cement seems suitable for clinical applications.
Keywords: Bone Tissue Engineering, Bone Cement, Hydroxyapatite, Nah2po4.2h2o, Setting Times, Compressive strength -
Increasing the average age of the population as well as sports injuries, bone-related diseases, such as osteoporosis, rupture or damage to cartilage and bone tissues, and bone fractures, has dramatically increased the need for repair and joint replacement surgeries. Biocompatible materials that are used as prosthetic stabilizers and bone fillers in orthopedic surgery are known as injectable bone cement (IBCs). Available clinical IBCs, such as polymethyl methacrylate and calcium phosphate cement are the most important of these materials. This paper presents the most popular substances for medical use. Although this replacement procedure reduces the pain and restores joint function, it is associated with several drawbacks that limit its efficiency and effectiveness, and sometimes patients should undergo revision surgeries. Recently, the development of the next generation of IBCs, which are bioactive and degradable with good mechanical properties, is of great interest. For the long-term clinical performance in cement arthroplasty, the next generation of bone cement with far greater mechanical and biological properties than acrylic bone cement on the market is required. As a result, new approaches and formulas have been developed using various techniques from different disciplines. This study summarizes the challenges, developments, and recommendations for the future. For this purpose, various literature from databases, such as ScienceDirect, SpringerLink, PubMed, and so on were consulted from 2000 to 2020.
Keywords: Bone tissue engineering, Bone cement, Polymethylmethacrylate (PMMA), Tri-calcium phosphate (TCP), Setting characteristics, Modification, Filling materials, Nanostructured materials -
How Much Bone Cement Is Utilized for Component Fixation in Primary Cemented Total Knee Arthroplasty?BackgroundNo scientific evidence exists regarding the amount of bone cement used and discarded in primary cemented Total knee arthroplasty (TKA). The aim of this study was to identify the exact amount of bone cement utilized for component fixation in primary TKA.MethodsIn a prospective study carried out at five centers, 133 primary cemented TKAs were performed. One pack of 40g Palacos bone cement (PBC 40) was hand mixed and digitally applied during the surgery. After fixation of the TKA components, the remaining bone cement was methodically collected and weighed on a digital weighing scale. The actual quantity of cement utilized for component fixation was calculated.ResultsOn an average, 22.1 g of bone cement was utilized per joint, which accounted to 39 % of 57 g, the solidified dry weight of PBC 40. Among 133 knees, the cement usage was 20 % to 50% in 109 knees, more than 50% in 20 knees and less than 20% in 4 knees. Knees which received larger sized femoral implant required more cement compared to medium and small sizes. Knees which had pulse lavage had more cement utilization compared to knees which had simple syringe lavage before implantation.ConclusionLarge quantity of bone cement was handled than actual requirements in primary TKA when a standard 40g pack was used with the digital application technique, resulting in sizeable discard of bone cement. Customizing cement pack according to the implant size can potentially avoid this cement wastage. Future research is required to study the utility and economic impact of smaller packs (20 g or 30 g) of bone cement in primary TKA. Level of evidence: IVKeywords: Bone cement quantity, Cement utility, Primary knee arthroplasty
-
تغییرات همودینامیک و عوامل مرتبط با آن در هنگام بکارگیری سیمان استخوانی در بیماران تحت جراحی ارتوپدیسابقه و هدف
سندرم کاشت سیمان استخوان یک تهدید مهم در تغییر وضعیت همودینامیک بیماران، حین اعمال ارتوپدی است. با توجه به اهمیت آگاهی تیم بیهوشی و جراحی از تغییرات احتمالی همودینامیک در هنگام این اقدام درمانی و جلوگیری از خطرات آن، این مطالعه با هدف تعیین تغییرات همودینامیک و عوامل مرتبط با آن در هنگام استفاده از سیمان استخوانی در بیماران کاندید جراحی ارتوپدی انجام شد.
مواد و روش هااین مطالعه توصیفی- تحلیلی بر روی بیماران کاندید جراحی ارتوپدی در بیمارستان بقیه الله(عج) تهران در سال1400 انجام شد. جامعه مورد مطالعه شامل بیماران کاندید جراحی ارتوپدی (فاقد بیماری های پاتولوژیک) بود که در عمل جراحی آن ها از سیمان استخوانی استفاده شده بود.
یافته هااز 63 نفر که وارد مطالعه شدند، 50 نفر مرد (79/36درصد) و مابقی زن بودند. میانگین سنی افراد 4/60±43/63 سال، وزن 9/1±79/31کیلوگرم و تغییرات میانگین فشارخون سیستولی افراد نیم ساعت قبل از عملmmhg128/79±4/83، حین mmhg7/32±119/50 و نیم ساعت پس از مصرف سیمان استخوانی mmhg4/79±121 ثبت شد. میانگین فشارخون دیاستولی نیم ساعت قبل از عمل mmhg5/23±78/12، حین mmhg4/58±74/26 و نیم ساعت پس از مصرف سیمان استخوانی mmhg6/54±74/71 ثبت شد. میانگین تغییرات ضربان قلب نیم ساعت قبل از عمل 5/84±76/41، حین سیمان گذاری7/71±80/77 و نیم ساعت بعد از سیمان گذاری 6/53±78/49 بود. میانگین اشباع اکسیژن خون قبل از عمل mmhg 1/14±97/03، حین mmhg 1/98±93/57 و نیم ساعت بعد از مصرف سیمان استخوانی mmhg 2/36±94/0 ثبت شد.
استنتاجبر اساس یافته های مطالعه با مصرف سیمان استخوانی فشارخون سیستولیک، دیاستولیک و میزان اشباع اکسیژن خون شریانی کاهش و ضربان قلب بیمار افزایش می یابد و پس ازگذشت بازه زمانی نیم ساعته، وضعیت همودینامیک بیماران به حالت نرمال نزدیک می شود.
کلید واژگان: همودینامیک, سیمان استخوانی, ارتوپدیBackground and purposeBone cement implantation syndrome is an important factor in changing the hemodynamic status of patients during orthopedic surgery. Anesthesiology team and surgeons should be aware of these hemodynamic changes and prevent complications, so, the aim of this study was to investigate the hemodynamic changes in patients during the use of bone cement.
Materials and methodsThis descriptive-analytical study was performed in orthopedic surgery patients in Tehran Baqiyatallah Hospital, Iran 2021. The patients had no pathological diseases and bone cement was used in their surgery.
ResultsThe participants (n=63) included 50 (79.36%) males. The mean age was 43.63±4.60 years, the weight was 79.31±9.1 kg, and the mean systolic blood pressure levels 30 minutes before and during surgery were 128.79±4.83 mmhg and 119.50±7.32 mmhg, respectively. Half an hour after bone cement implantation, it was 121±4.79. Mean diastolic blood pressure levels were 78.12±5.23 mmHg and 74.26±4.58 mmHg half an hour before surgery and during surgery, respectively and 74.71±6.54 mmHg half an hour after bone cement application. Mean heart rate changes were 76.41±5.84 half an hour before surgery, 80.77±7.71 during cementation, and 78.49±6.53 half an hour after cementation. Mean blood oxygen saturation before and during the operation were 97.03%±1.14 mmHg and 93.57%±1.98 mmHg, respectively and 94.0% ± 2.36 mmHg half an hour after bone cement implantation.
ConclusionCurrent study showed that bone cement implantation decreases systolic and diastolic blood pressure values and arterial blood oxygen saturation but increases heart rate. However, the hemodynamic status would be normal by half an hour after bone cement implantation.
Keywords: hemodynamics, bone cement, orthopedics
-
از آنجا که گزینه «جستجوی دقیق» غیرفعال است همه کلمات به تنهایی جستجو و سپس با الگوهای استاندارد، رتبهای بر حسب کلمات مورد نظر شما به هر نتیجه اختصاص داده شدهاست.
- نتایج بر اساس میزان ارتباط مرتب شدهاند و انتظار میرود نتایج اولیه به موضوع مورد نظر شما بیشتر نزدیک باشند. تغییر ترتیب نمایش به تاریخ در جستجوی چندکلمه چندان کاربردی نیست!
- جستجوی عادی ابزار سادهای است تا با درج هر کلمه یا عبارت، مرتبط ترین مطلب به شما نمایش دادهشود. اگر هر شرطی برای جستجوی خود در نظر دارید لازم است از جستجوی پیشرفته استفاده کنید. برای نمونه اگر به دنبال نوشتههای نویسنده خاصی هستید، یا میخواهید کلمات فقط در عنوان مطلب جستجو شود یا دوره زمانی خاصی مدنظر شماست حتما از جستجوی پیشرفته استفاده کنید تا نتایج مطلوب را ببینید.
* ممکن است برخی از فیلترهای زیر دربردارنده هیچ نتیجهای نباشند.
-
معتبرحذف فیلتر