Investigation of the Relationship between Land Surface Temperature with Vegetation and Surface Moisture in the Land Use of Zahak Area of Sistan Plain Using Landsat Satellite Images

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Land surface temperature is considered a key parameter in the physic processes of land surface at all scales of local to global. In this study, the relationship between land surface temperature with vegetation and soil surface moisture in land uses of Zahak plain of Sistan area was investigated. In order to, Landsat TM (1987), TM (2001) and OLI (2018) satellite imagery were used. After the preprocessing and image processing steps, the extraction of land use maps was performed based on the monitored classification method and through maximum probability algorithm for a period of 30 years. Also, land surface temperature was evaluated statistically by separate window method and the relationship between land surface temperature with vegetation and soil moisture. The results showed that the accuracy of classification by maximum probability method through geomorphic facts data, TM and OLI images in terms of kappa coefficient of 0.89, 0.95 and 0.84, respectively, based on the overall accuracy of 91.8, 96.45 and 87.89% was obtained. During 1987, 2001 and 2018, average of the land surface temperature indices were 38.13, 45.73 and 41.14 ° C, the normalized difference vegetation index was -0.11, -0.13 and -0.16, and the normalized difference moisture index was estimated 0.64, 0.63 and 0.58. The relationship between land surface temperature and normalized difference of vegetation index was no correlative. The correlation between land surface temperature and the normalized difference of humidity index was also inverted and negative. Plant regeneration and growth was decreased owing to factors including hydrological drought and Climatic conditions due to reduced rainfall, rising air temperature and Dust storms. Therefore, due to the lack of suitable vegetation, vegetation is not effective in reducing the surface temperature of the study area.
Language:
Persian
Published:
Iranian Journal of Remote Sencing & GIS, Volume:14 Issue: 1, 2022
Pages:
21 to 42
https://magiran.com/p2454451  
مقالات دیگری از این نویسنده (گان)