به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
مقالات رزومه

دکتر محمد مهدی سپهری

  • Hana Nazarpour, Mohammad Sepehri *, Roghaye Khasha
    Background
    Breast cancer (BC) is the most common cancer and one of the main causes of death among women. This study was conducted to investigate the relationship between BC and nutrition and lifestyle, as well as compare machine learning models in predicting this disease.
    Methods
    We designed a questionnaire related to nutrition and lifestyle with a nutritionist's guidance and provided them to 569 patients. After data gathering, we developed some machine-learning algorithms like logistic regression (LR), K-Nearest Neighbor (KNN), Decision tree (DT), and Support vector machine (SVM) classifiers. To make more accurate models, we used an oversampling method to avoid skewing the model due to the lack of balance in the target classes, a grid search method to adjust the model's hyperparameters and finally random forest to identify each variable's importance.
    Results
    The results of this research showed that the accuracy of the DT model was 0.95, SVM and LR were 0.93, and KNN was 0.86. The results indicated the better performance of DT among other models.
    Conclusions
    Our findings show that it is possible to predict the type of cancerous tumor with relatively high accuracy without using specific information about the tumor itself. In particular, in our study, the decision tree has shown better accuracy compared to other models.
    Keywords: Breast Cancer, Nutrition, Lifestyle, Data Mining, Classification
  • مریم ملاباقر، علیرضا حسن زاده، محمدمهدی سپهری*، عباس حبیب الهی، ابوالقاسم سرآبادانی
    زمینه و هدف

    در دنیای فناوری امروزی که به سرعت در حال رشد و تکامل است، ظهور و شیوع بیماری ها به یک موضوع مهم تبدیل شده است و پیشگیری و کنترل بیماری ها توسط فناوری به چالش اصلی متخصصان و صنایع مراقبت های بهداشتی تبدیل شده است. نظام مراقبت سلامت یکی از ابزارهای مهم در هدایت و نظارت بر فرآیندهای درمانی در سراسر جهان است. پژوهشگران بسیاری در سراسر جهان در حوزه های مختلف پژوهشی و از دیدگاه های مختلف به طراحی نظام مراقبت سلامت پرداختند. هدف این پژوهش بررسی کمی پژوهش های انجام شده در حوزه نظام مراقبت سلامت است.

    روش بررسی

    پژوهش حاضر از نوع توصیفی تحلیلی است و به روش کتاب سنجی و تحلیل محتوا انجام شده است. نمونه این پژوهش با توجه به موضوع و ملاک های ذکر شده در روش پژوهش، از پایگاه استنادی PubMed استخراج شده و مربوط به بازه زمانی سال 2000 تا پایان اکتبر 2023 است. تحلیل داده ها نیز با استفاده از نرم افزار VOSviewer انجام شده است.

    یافته ها

    نتایج حاصل بر رشد روزافزون پژوهش و نگارش مقاله در حوزه نظام مراقبت سلامت تاکید دارد. بررسی حاصل نشان داد که 5 کشور ایالات متحده آمریکا، انگلیس، سوئیس، نیوزیلند و آلمان بیشترین پژوهش را در حوزه پژوهش انجام داده اند. در این پژوهش اکوسیستم نظام مراقبت سلامت، موسسات، نویسندگان، هم رخدادی واژگان و شبکه کلمات کلیدی در حوزه نظام مراقبت سلامت نشان داده شد و مورد بررسی قرار گرفت.

    نتیجه گیری

    یافته ها نشان داد که درک لزوم راه اندازی نظام ملی مراقبتی و نیز افزایش ابزارهای سلامت الکترونیک و توسعه سیستم های اطلاعات پزشکی در گذر زمان باعث رشد کمی پژوهش ها در موضوع پژوهش شده است.

    کلید واژگان: نظام مراقبت سلامت, کتاب سنجی, سلامت هوشمند, مدیریت سلامت
    Maryam Mollabagher, Alireza Hassanzadeh, Mohammad Mehdi Sepehri*, Abas Habibelahi, Abolghasem Sarabadani
    Background and Objective

    In today’s technology world, which is rapidly growing and developing, the emergence and infection of diseases becomes an issue by technology becomes the main challenge of health care professionals and industries. The surveillance system is one of the important tools in guiding and monitoring the treatment processes around the world. The purpose of this research is to quantitatively examine the researches conducted in the field of surveillance system.

    Methods and Materials: 

    The current research is descriptive-analytical and has been carried out by bibliography and content analysis and the criteria mentioned in the research method. According to the topic, the sample of this research is from the PubMed reference database and related to research related to the period of 2000 to the end of October 2023. Data analysis was also done using VOSviewer software.

    Results

    The results of the growth of days, research and article writing are emphasized in the field of national care system. Examining the results showed that 5 countries, the United States of America, England, Switzerland, New Zealand and Germany, conducted the most research in the field of investigation. In this research, the ecosystem of the national care system, institutions, authors, the co-occurrence of words and the network of keywords in the field of the surveillance system were shown and investigated.

    Conclusion

    The findings showed that the understanding of the need to set up a surveillance system, as well as the increase of electronic health tools and the development of medical information systems over time, has caused a quantitative growth of research on the subject of research.

    Keywords: Surveillance System, Bibliography, Smart Health, Health Management
  • Mahdi-Reza Borna, Mohammad Mehdi Sepehri*
    Background

    Infertility treatment methods that are used today have a limited (or little) success rate, and patients bear a lot of financial and emotional burden to get pregnant. Recently, artificial intelligence has been proposed to evaluate gametes better and choose the best embryo for transfer to the uterus. This study investigated the financial benefit of using artificial intelligence for infertility treatment.

    Materials and Methods

    We aim to evaluate the effectiveness of AI in IVF, comparing AI model performance with standard methods and introducing a novel method to measure financial benefits in healthcare resource allocation.

    Results

    Achieving 75% accuracy, AI significantly outperformed standard methods, reducing the likelihood of discarding viable embryos. This technology streamlines the IVF process, leading to shorter treatment cycles and a cost reduction of 1500 dollars per cycle.

    Conclusion

    The integration of AI in IVF represents a paradigm shift, improving success rates, cost-efficiency, and patient experiences. Further research and adoption of AI-driven embryo selection can revolutionize infertility treatments, benefiting both patients and healthcare systems.

    Keywords: Embryo selection, Financial benefits, AI-powered embryo selection, In vitro fertilization enhancement, Healthcare cost reduction, Clinical pregnancy prediction
  • نعیمه اسدیان زرگر، کیانوش سوزنچی*، محمدمهدی سپهری

    با وجود پژوهش های متعدد انجام شده در ارتباط با نحوه اثرگذاری منظر محوطه بیمارستان در رضایت کاربران و انتشار دستورالعمل های طراحی، مطالعات مروری محدودی جهت شناخت جریان پژوهش، ضعف و قوت های این حوزه انجام شده است تا دسترسی طراحان به اطلاعاتی سازمان یافته درباره ابعاد نظری و عملی طراحی را تسهیل کند. هدف این پژوهش، مرور و تحلیل منابع موجود و ارایه آن در قالب یک چارچوب مفهومی، شناسایی نقاط قوت و ضعف ادبیات موجود و تشخیص نقاط نیازمند به تحقیقات بیشتر در حوزه طراحی منظر محوطه بیمارستان هاست. طبق یک مرور سیستماتیک، 47 منبع مرتبط یافت شد. سپس به منظور منظم کردن اطلاعات به دست آمده با روش تحلیل محتوا به کدگذاری منابع در نرم‏افزار MAXQDA پرداخته ‏شد. 618 کد استخراج شد که در قالب شش مقوله و 30 زیرمقوله دسته‏بندی شدند. این شش مقوله، استخوان‏بندی چارچوب مفهومی ادبیات طراحی منظر محوطه بیمارستان را تشکیل می‏دهند که عبارت اند از: 1)تعاریف مربوط به منظر محوطه بیمارستان، 2) گونه‎‏شناسی، 3) نظریه‏های بنیادین، 4) رویکردهای طراحی، 5) اصول و شاخص‏های طراحی و 6) ترجیحات و نیازهای کاربران. یافته‏های پژوهش، حاکی از رشد مناسب ادبیات این حوزه از دیدگاه نظری و عملی (بعد برنامه‏دهی و عملیاتی) به طور همزمان است. مفهوم نظری منظر محوطه بیمارستان در حال تکامل و قابل تعریف و مفهوم سازی به عنوان فضایی با کارکردهای خدماتی، نمادین و احیایی است. توصیف بعد عینی منظر از طریق مطالعات گونه شناسی انجام شده است. ادبیات طراحی منظر محوطه در وجه عملی، ابتدا معطوف به مجموعه ای از رویکردهای طراحی است که به دنبال عملیاتی شدن کارکردهای آن بودند. این رویکردها در اصول، روش و اقدامات متفاوت هستند اما هدف اصلی آنان تبیین رابطه متقابل بین کاربر و منظر بیمارستانی است. اصول، کیفیت ها و توصیه های طراحی عمومی و مشترک برای کاربران متعدد و مناسب برای بیمارستان های عمومی است. ضعف اصلی ادبیات منظر محوطه بیمارستان، محدودبودن مجموعه شواهد معتبر درزمینه شناخت کاربر و نوع ارتباط او با محیط است. ازاین رو انجام مطالعات ارزیابی از نمونه های موردی در بسترهای مختلف برای تقویت غنای ادبیات ضروری به نظر می رسد.

    کلید واژگان: فضای خارجی بیمارستان, منظر محوطه‏ بیمارستان, مرور سیستماتیک, تحلیل محتوا, چارچوب مفهومی
    Naeimeh Asadian Zargar, Kianoush Suzanchi *, Mohammad Mehdi Sepehri

    Despite numerous studies on how the hospital outdoor landscape affects user satisfaction and the publication of design guidelines, this field’s research flow, strengths, and weaknesses have not been thoroughly reviewed. This makes it difficult for designers to access organized information on design’s theoretical and practical aspects. The current research aims to comprehensively review and analyze the existing resources and present them in a conceptual framework. This process will enable us to identify the strengths and weaknesses of the current literature and identify specific areas that require further research in the field of hospital landscape design. After conducting a systematic review, 47 relevant sources were identified. These sources were then analyzed using the content analysis method and encoded in MAXQDA software to organize the obtained information. 618 codes were extracted and categorized into six main categories and 30 subcategories. These categories form the conceptual framework of hospital outdoor landscape design literature, covering topics such as 1) definitions of hospital outdoor landscape, 2) typology, 3) fundamental theories, 4) design approaches, 5) principles and design indicators, and 6) preferences and needs of users. Based on the research, the literature in this field has been developed appropriately from both theoretical and practical perspectives (i.e., programming and operational dimensions). The theoretical essence of hospital outdoor landscapes is evolving. It can now be defined as a space that serves functional and symbolic purposes while providing a sense of restoration. To describe the objective dimension of the landscape, typological studies have been conducted. The literature on designing hospital outdoor landscapes from a practical perspective initially focused on design approaches that aimed to implement their expected functions. These approaches may vary in principles, methods, and actions, but their main objective is to elucidate the interaction between the hospital landscape and its users. The principles, qualities, and recommendations are general and applicable to various users, making them suitable for public hospitals. The main weakness of hospital outdoor landscape literature is the lack of reliable evidence concerning the users’ perception and interaction with the environment. To address this, it is crucial to conduct evaluation studies on various case samples in different settings to improve the quality of the literature.

    Keywords: hospital campus, hospital outdoor landscape, Systematic review, content analysis, Conceptual Framework
  • Mohammad Pishnamazzadeh, Mohammad Sepehri *, Bakhtiar Ostadi
    Hospitals are critical facilities which have a great role to affects the number of mass casualties after disasters. Hence, it is necessary to adopt strategies to increase hospitals preparedness and to improve their resilience. The present paper tries to propose a strategy to cope with surge of demands under disruptions in a hospital. An optimization model for bed management considering collaboration between hospital wards in order to minimize the waiting times of the patients provided in this research and the objective function under the proposed strategy and without the proposed strategy were compared. The results show that the proposed strategy can reduce the patients waiting time under disruptions. Due to the complexity of the proposed model, a Lagrangian relaxation-based heuristic is developed to solve the model. Computational results show that the proposed algorithm is able to reach desirable gap in a reasonable time.
    Keywords: Bed management, operations research in health care, patient waiting time, Hospital Performance
  • Akram Nakhaei, Mohammad Mehdi Sepehri *, Toktam Khatibi
    Background and Objective

    Noise is a critical concern for practical machine learning, especially medical applications. There exist two kinds of noise, including attributes and class noises. Class noise is potentially more dangerous, so various filtering techniques, particularly prediction-based, have been proposed to control it. Great attention to class noise has made the researchers ignorant that attribute noise, in turn, is harmful. Hence, it is improper to utilize prediction-based filtering to correct class noise without regarding attribute noise.

    Method

    To tackle this problem, we developed a method to fix class noise in the presence of attribute noise. This method excludes noisy components of attributes, based on the information bottleneck principle, by compressing attributes locally and gradually in successive iterations. It uses heterogeneous ensemble filtering to correct class noise. In the initial iteration, filtering is conservative and progressively, in succeeding iterations, tends to majority vote.

    Results

    We compared the proposed method's predictive performance with the RF majority-vote filter on three real binary classification problems from the UCI repository, including Breast, Transfusion, and Ionosphere. Random forest, adaptive boosting, support vector machines, and naïve Bayes were used for assessing methods from different viewpoints. Results show that the proposed method performed better than the RF majority-vote filter and seems to open a promising research scope for noise filtering.

    Conclusion

    Our study revealed that correcting class noise by controlling attribute noise enhances the predictive performance of classifiers.

    Keywords: Inductive inference, Class noise, Attribute noise, Information bottleneck principle
  • بختیار استادی*، مهناز ابراهیمی، محمدمهدی سپهری، علی حسین زاده کاشان

    پژوهش حاضر سعی دارد با مروری بر مقالات و بررسی شکاف ها و چالش های موجود تحقیقاتی در حوزه های تاب آوری، تداوم کسب وکار، ریسک و ایمنی فرآیند با هدف ارایه چندین جهت برای تحقیقات آتی به درک پژوهش های مختلف در این حوزه ها با دیدگاه های مختلف بپردازد. همچنین در این پژوهش رابطه مقالات این حوزه ها با یکدیگر بررسی شده است. در این پژوهش، پژوهش های مرتبط بررسی و گزارش شده است تا چارچوب ها، مدل ها و روش های ارایه شده برای آنها شناسایی شود. در مرحله اول، مقالات بر اساس شباهت به سه دسته «به حداکثر رساندن ارزش تداوم کسب وکار و تاب آوری»، «به حداکثر رساندن ایمنی فرآیند و تاثیر عوامل ریسک و تاب آوری» و «به حداقل رساندن ریسک و تاثیر عدم قطعیت.» در مرحله دوم چارچوب های مفهومی مناسب تحت عنوان خانه تحقیق مبتنی بر سه حوزه تاب آوری، تداوم کسب وکار، ریسک برای هر دسته ایجاد شده است. در مرحله سوم با بررسی دقیق مقالات بیست و دو کد بسته به دست آمده و شبکه های هم رخدادی آنها بررسی شده است. یافته های اصلی این مقاله، به دست آوردن دسته بندی مقالات مورد مطالعه، ارایه چارچوب های مفهومی حاصل از تحلیل مقاله و همچنین ارایه مدل مفهومی است.

    کلید واژگان: تاب آوری, تداوم کسب و کار, ریسک, ایمنی فرایند, منابع
    Bakhtiar Ostadi *, Mahnaz Ebrahimi-Sadrabadi, MohammadMehdi Sepehri, Ali Husseinzadeh Kashan

    This study attempted to review the articles and explore the gaps and challenges in the areas of resilience, business continuity, risk, and process safety with the aim of providing several directions for future research to understand different research directions in these areas with different perspectives. In addition, in this study, the relationship of articles in these areas with each other was examined. In this research project, related studies were reviewed and reported to identify presented frameworks, models, and methods for them. In the first phase, the articles were divided into three categories according to their similarity, namely “maximizing the value of business continuity and resilience,” “maximizing process safety and the effect of risk and resilience factors,” and “minimizing risk and effect of uncertainty.” In the second phase, the appropriate conceptual frameworks titled “research house” based on resilience, business continuity, and risk categories were created for each category. In the third phase, 22 closed codes were obtained by carefully reviewing the articles, and their co-occurrence network was investigated. The main findings of this article were categorizing the studied articles, providing conceptual frameworks resulting from article analysis, and presenting a conceptual model.

    Keywords: resilience, Business continuity, risk, process safety, resources
  • مهناز ابراهیمی صدرآبادی، بختیار استادی*، علی حسین زاده کاشان، محمدمهدی سپهری

    با گذشت زمان و افزایش بحران ها در جوامع، سازمان ها به طور فزاینده ای در معرض اختلال هستند. که این بحران ها می توانند منشا طبیعی یا انسانی داشته باشد.جنبه اساسی تاب آوری شامل توانایی یک عنصر در بازگشت به وضعیت نرمال بعد از وارد شدن اختلال به آن و تخصیص منابع است. بدیهی است که در هر سازمانی، هدف اساسی تخصیص کمترین منابع برای بازیابی عملیات و نیز بازگرداندن فعالیت ها به آستانه تحمل است تا رویدادهای مخرب، فعالیت های حیاتی را متوقف نکند. در این مقاله، یک مدل کمی برای تخصیص منابع ارایه می شود که فقدان تاب آوری را به حداقل می رساند. مسیله یک فرض اساسی دارد، این است که حداقل در یکی از منابع موجود با توجه به میزان بیش از حد بودن تقاضا، کمبود منبع وجود داشته باشد. پس از حل مدل با آزمایش عددی، نتایج مدل تشریح شد و مشخص شد که رویدادهای مخرب قبل از آستانه تحمل بازیابی شدند.

    کلید واژگان: بهینه سازی فرایند, تاب آوری فرایند, تخصیص منابع, کمبود منابع
    Mahnaz Ebrahimi-Sadrabadi, Ali Husseinzadeh Kashan, MohammadMehdi Sepehri

    As time goes on and crises increase in societies, organizations are increasingly exposed to disruption. These crises can be of natural (such as earthquakes, floods, and fires) or human (such as terrorist attacks, infectious diseases, and intentional or inadvertent employee errors). Therefore, organizations need to be resilient to protect themselves from harmful consequences. The basic aspect of resilience involves the ability of an element to return to normal after disruption and resource allocation. Obviously, in any organization, the primary goal is to allocate the least resources to recover operations and to bring activities back to the tolerance threshold so that destructive events do not stop vital activities. In this paper, a quantitative model for resource allocation is presented, which minimizes the lack of resilience. The problem has a basic assumption, that there is a shortage of resources in at least one of the available resources due to excessive demand. After solving the model by numerical experiment, the results of the model were described and it was found that destructive events were retrieved before the tolerance threshold.

    Keywords: Process Optimization, Process resilience, Resource Allocation, Lack of resources
  • Mojtaba Azizian, MohammadMehdi Sepehri *

    Entropy is a measure of disorder in a system and is widely used in other scientific and engineering disciplines such as statistical mechanics and information theory. In a chaotic supply chain, the goal is to reduce chaotic behaviors and predict the future of the supply chain. In this case, relationships in a three-tier supply chain are considered in a continuous-time environment. In this paper, the chaotic supply chain is investigated and controlled using the entropy minimization method. Due to the dynamic nature of the supply chain and its chaotic behavior, Poincaré mapping of the system has been prepared by the stroboscopic method. Then, by defining Shannon entropy on the map, the entropy of the system is significantly reduced by the gradient descent algorithm.

    Keywords: chaotic, dynamic, Poincaré map, Entropy, Minimization, three-tier supply chain
  • M. Moradi *, M. Modarres, M. M. Sepehri
    Prescribing and consuming drugs more than necessary is considered as polypharmacy, which is both wasteful and harmful. The purpose of this paper is to establish an innovative data mining framework for analyzing physicians’ prescriptions regarding polypharmacy. The approach consists of three main steps: pre-modeling, modeling, and post-modeling. In the first step, after collecting and cleaning the raw data, several novel physicians’ features are extracted. In the modeling step, two popular decision trees, i.e., C4.5 and Classification and Regression Tree (CART), are applied to generate a set of If-Then rules in a tree-shaped structure to detect and describe physicians’ features associated with polypharmacy. In a novel approach, the response surface method (RSM) as a tool for hyper-parameter tuning is simultaneously applied along with correlation-based feature selection (CFS) to enhance the performance of the algorithms. In the post-modeling step, the discovered knowledge is visualized to make the results more perceptible, then is presented to domain experts to evaluate whether they make sense or not. The framework has been applied to a real-world dataset of prescriptions. The results have been confirmed by the experts, which demonstrates the capabilities of the data mining framework in the detection and analysis of polypharmacy.
    Keywords: Decision Tree, CART, C4.5, Parameter tuning, response surface method (RSM), rational use of drugs
  • Sara Beigian, Nasser Safaie *, MohammadMehdi Sepehri
    Background and objectives

    The rising trend of hospital costs as a significant share of healthcare system costs is one of the challenges facing hospital managers today. Hospital as a complex organization includes many factors such as human resources, patient flow and performance indicators and therefore faces a variety of management processes. Hospital costs as part of the in-hospital cash flow are affected by a large number of variables that change over time and interact with each other. This study aimed to provide a model for hospital costs based on the internal behavior of the system in order to control costs.

    Method

    The research method of the paper is descriptive-analytical. Considering the complex and dynamic nature of the system, a model was designed and presented using the system dynamics approach. Data were collected using interview methods and reviewing past studies. To run the proposed model the computer software (Vensim DSS 6.4E) was employed. After testing the model, six scenarios were defined based on the presented model and its subsystems (financial flow, patient flow and employed nurses) to reduce costs, which include: reducing the average length of stay, increasing the staff productivity, reducing the intensity of hospital care, reducing clothing consumption, modifying the hospital nutrition process and finally the simultaneous implementation of all the above. This system dynamics model integrates all of these subsystem's effects rather than considering them individually which is the strength of system dynamics modeling.

    Results

    The first scenario, while reducing the total cost by 3.8%, increased the bed admission ratio by 6.5%. It should be noted that this scenario increased the hoteling cost by 2%. The second scenario resulted in a 10% reduction in total cost. The third scenario saved 9% of the total cost. The fourth and fifth scenarios reduced costs 1.5% and 7.5%, respectively by reducing overhead costs. The results showed that the sixth scenario is the most effective policy. It reduced the total cost and the hoteling cost by 26% and 22%, respectively.

    Conclusion

    Findings indicate that the hospital will face a reduction in cost compared to the current situation by using any of the scenarios but it will see a further reduction with the simultaneous implementation of the scenarios while controlling the cost of hoteling. Based on the results any development in surgery department capacity must be accompanied by a suitable cost control policy.

    Keywords: Hospital Administration, Hospital Costs, Cost control, System Dynamics Analysis
  • Toktam Khatibi, Rouhangiz Asadi *, MohammadMehdi Sepehri, Pejman Shadpour
    Background and Objective

    The health industry is a competitive and lucrative industry that has attracted many investors. Therefore, hospitals must create competitive advantages to stay in the competitive market. Patient satisfaction with the services provided in hospitals is one of the most basic competitive advantages of this industry. Therefore, identifying and analyzing the factors affecting the increase of patient satisfaction is an undeniable necessity that has been addressed in this study.

    Methods

    Because patient satisfaction characteristics used in hospitals may have a hidden relationship with each other, data mining approaches and tools to analyze patient satisfaction according to the questionnaire used We used the hospital. After preparing the data, the characteristics mentioned in the questionnaire for patients, classification models were applied to the collected and cleared data, and with the feature selection methods, effective characteristics Patients were identified and analyzed for satisfaction or dissatisfaction.

    Results

    Based on the findings of the present study, it can be concluded that the factors of patient mentality of the physician's expertise and skill, appropriate and patient behavior of the physician and food quality (hoteling) respectively have a higher chance of increasing patient satisfaction with Establish services provided in the hospital.

    Conclusion

    Comparing the approach used in this study with other studies showed that due to the hidden effects of variables on each other and the relatively large number of variables studied, one of the best options for analyzing patient satisfaction questionnaire data, Use of data mining tools and approaches

    Keywords: Machine Learning Algorithms, Patient satisfaction Data mining Clustering Feature selection
  • بختیار استادی*، مهناز ابراهیمی صدرآبادی، علی حسین زاده کاشان، محمد مهدی سپهری

    آنالیز فرآیند ارتباط تنگاتنگی با بهینه سازی فرایند دارد ودرآن بحث منابع نقش اصلی دارد. ازآنجا که مجموعه ی بهینه منابع به ویژه درشرایط رخداد حوادث غیر منتظره دارای اثرات متغیر در ریسک، عملکرد فرآیند و بازدهی آن است می تواند مشابه مدل انتخاب سبد بهینه سهام تعریف شود. هدف این مقاله، ارایه مدلی ریاضی برای تخصیص منابع انسانی بااستفاده از مدل مارکویتز براساس مهارت ها و هزینه ها و باهدف مینیمم کردن ریسک و ماکسیمم کردن بازده منابع است. مدل ارایه شده شامل ترکیبی از ارزیابی ریسک وبازده جهت پیدا کردن بهترین سبد ترکیب منابع در شرایط بحرانی است و روش حل محدودیت اپسیلون است. ازجمله نوآوری ها، مدل مارکوییتز برای بهینه سازی تخصیص منابع و تخصیص مبتنی بر ریسک منابع است. مدل پیشنهادی در مطالعه موردی واحد اورولوژی یک مرکز فوق تخصصی کلیه استفاده شده است. نتایج نشان دهنده تخصیص منابع با بازده وریسک بهینه و بیشترین میزان خروجی در شرایط بحرانی باشد.

    کلید واژگان: تخصیص منابع, مدل مارکویتز, فرآیندهای عملیاتی, ریسک و بازده
  • رقیه خشا، محمد مهدی سپهری*، نسرین طاهرخانی
    زمینه و هدف

    آسم یک بیماری مزمن غیرقابل درمان، اما قابل کنترل است که پزشکان جهت دستیابی به سطح مطلوب کنترل بیماری، نظارت مداوم بر علایم و همچنین تنظیم یک برنامه درمانی مبتنی بر خودمراقبتی را پیشنهاد می نمایند. ارایه این برنامه، مطابق با سطح کنترلی که بیمار در آن قرار دارد، تنظیم میگردد. لذا ارزیابی و دسته بندی دقیق سطح کنترل آسم، می تواند در ارایه برنامه درمانی موثر به بیمار حایز اهمیت بوده و موجب بهبود خودمراقبتی و توسعه ی مداخلات پیشگیرانه جهت کاهش علایم آسم شود.

    روش بررسی

    در این مقاله، داده های 96 بیمار آسمی شامل اطلاعات دموگرافیک، متغیرهای بالینی و سوابق پزشکی بیمار، داده های زیست محیطی موثر بر آسم، معیارهای عملکرد ریه و گروه محرک مبتنی بر پرسش نامه های کنترل آسم، در یک دوره زمانی 9 ماهه از یک بیمارستان تخصصی بیماریهای ریوی تهران جمع آوری و در یک پایگاه داده چندمتغیره و چندکلاسه تجمیع شده و سپس سطح کنترل آسم با کمک یک مدل تلفیقی مبتنی بر خوشه بندی فازی و الگوریتمهای با نظارت در یادگیری ماشین دسته بندی شده است. 

    یافته ها

    مدل پیشنهادی برای ارزیابی سطح کنترل آسم که حاصل عملیات متوازن سازی، خوشه بندی فازی و انتخاب مشخصه بر روی داده هاست، دقتی به میزان 88% ارایه نموده است. 

    نتیجه گیری

    مدل حاضر، علاوه بر کمک به پزشکان برای شناسایی دقیق تر سطح کنترل آسم، می تواند در سیستم های الکترونیکی خودمراقبتی به منظور ارایه هشدارهای شخصی شده در مورد احتمال تضعیف کنترل آسم به کار رود. این چنین ابزارهایی می توانند مراقبت از آسم را از رویکرد مراقبتی واکنشی به یک رویکرد پیشگیرانه ارتقا دهند که در آن تصمیم ها و اقدام های درمانی از سوی پزشک ناشی از سطح کنترل آسم مزمن و پیشگیری از آسم حاد باشد.

    کلید واژگان: کنترل آسم, پیشگیرانه, خوشه بندی, دسته بندی با ناظر, خودمراقبتی
    Roghaye Khasha, Mohammad Mahdi Sepehri*, Nasrin Taherkhani
    Background and Aim

    Asthma is a common and chronic disease of respiratory tracts. The best way to treat Asthma is to control it. Experts of this field suggest the continues monitoring on Asthma symptoms and adjustment of self-care plan with offering the preventive treatment program to have desired control over Asthma. Presenting these plans by the physician is set based on the control level in which the patient is. Therefore, successful recognition and classification of the disease control level can play an important role in presenting the treatment program to the patient and improves the self-care and strengthens the early interventions to alleviate the Asthma symptoms.  

    Materials and Methods

    Based on this objective, we collected the data of 96 Asthma patients within a 9-month period from a specialized hospital for pulmonary diseases in Tehran. Then we classified the Asthma control level by fuzzy clustering and different types of data mining method within a multivariate dataset with the multi-class response variable.

    Results

    Our best model resulting from the balancing operations and feature selection on data have yielded the accuracy of 88%.

    Conclusion

    Our proposed model can be applied in electronic Asthma self-care systems to support the decision in real time and personalized warnings on the possible deterioration of Asthma control. Such tools can centralize the Asthma treatment from the current reactive care models into a preventive approach in which the physician’s decisions and therapeutic actions are resulting from the personal patterns of chronic Asthma control and prevention of acute Asthma.

    Keywords: Asthma Control, Preventive, Clustering, Classification, Self-Care
  • مرتضی مرادی*، محمد مدرس، محمد مهدی سپهری
    مقدمه

    تجویز و مصرف بیش از حد داروها که با عنوان چنددارویی شناخته می شود، هم موجب اتلاف منابع می گردد و هم برای بیماران زیان بار است. چنددارویی به خصوص برای سالمندان از اهمیت بیشتری برخوردار است؛ بنابراین عوامل موثر بر آن باید به درستی شناسایی و واکاوی شود.

    روش

    در این پژوهش گذشته نگر، نخست عملکرد الگوریتم های مختلف دسته بند C4.5، SVM، KNN، MLP و شبکه بیزی برای شناسایی چنددارویی، با نرم افزار WEKA مورد مقایسه قرار می گیرد. این فرآیند، با استخراج 16 ویژگی جدید در کنار چهار ویژگی موجود در داده های 81،677 نسخه که برای تعداد 19،428 بیمار سرپایی با سن 70 تا 95 سال که در داروخانه های طرف قرارداد با بیمه سلامت استان تهران پیچیده شده اند، انجام شد. مقایسه عملکرد به وسیله آزمون t اصلاح شده با بازنمونه برداری صورت پذیرفت. به منظور شناسایی اثر ویژگی های بیماران بر چنددارویی، دو پارامتر مهم الگوریتم C4.5 به وسیله جستجوی توری بر روی 50% مجموعه داده بهینه سازی و سپس بر 50% دیگر مجموعه داده اعمال گردید و قوانین حاصل از آن در قالب درخت تصمیم و عبارات کلامی ارایه شد.

    نتایج

    مقایسه زوجی دسته بندها نشان گر عملکرد مناسب تر C4.5 و شبکه بیزی در مقایسه با سایر روش ها است. C4.5 توانایی شناسایی ویژگی های موثر بر چنددارویی را دارد. تنظیم پارامتر این الگوریتم باعث بهبود شاخص درستی و AUC شده و به شدت اندازه درخت تصمیم و تعداد قوانین تولیدی را کاهش می هد.

    نتیجه گیری

    استفاده از رویکرد داده کاوی و به کارگیری C4.5 توانایی شناسایی و تبیین ویژگی های سالمندان را بر پدیده چنددارویی دارد. درصد مراجعه بیشتر به پزشکان عمومی و ارتباط با تعداد محدودتری از داروخانه از مهم ترین این ویژگی ها است.

    کلید واژگان: داده کاوی, دسته بندی, چنددارویی, منطقی سازی تجویز و مصرف دارو, سالمندان
    Morteza Moradi*, Mohammad Modarres, Mohammad Mehdi Sepehri
    Introduction

    Prescribing and consuming drugs more than necessary which is known as polypharmacy, is both waste of resources and harm to patients. Polypharmacy is especially important for elderly patients; therefore, the factors affecting it must be identified and analyzed properly.

    Method

    In this retrospective study, first, several classifier algorithms, i.e., C4.5, SVM, KNN, MLP, and BN for polypharmacy identification were compared in terms of performance using WEKA software. In this process, 16 new features were extracted alongside the four existing features from data on 81,677 prescriptions of 19,428 outpatients aged 70 to 95 years whose prescriptions were dispensed in pharmacies contracted by the Iran Health Insurance Organization- Tehran province. The performance comparison was done using corrected t-test with resampling. In order to identify the effect of elderly patients’ characteristics on polypharmacy, two important parameters of the C4.5 were optimized by grid search using 50% of the dataset and then run on the rest of the dataset. The resulted rules were then presented in the form of a decision tree and verbal expressions.

    Results

    Paired comparison of the classifiers indicated better performance of C4.5 and BN compared to the others. C4.5 had the ability to identify the factors that affect polypharmacy. In addition, parameter tuning improved the accuracy and AUC of applied algorithms. It also reduced the size of the resulted decision trees as well as the number of generated rules significantly.

    Conclusion

    The data mining approach and C4.5 can identify and explain the characteristics of the elderly effective on the polypharmacy. The higher percentage of visits to general practitioners and contacts with a limited number of pharmacies are the most important characteristics.

    Keywords: Data Mining, Classification, Polypharmacy, Rational Prescription, Use of Drugs, Elderly
  • Akram Nakhaei, MohammadMehdi Sepehri *, Pejman Shadpour, Morteza Khavanin Zadeh
    Background and Objective

    Population aging has brought a rise in the prevalence of diabetes and hypertension, leading to more cases of renal failure. Hemodialysis, as a method of renal replacement therapy, by far prevails over peritoneal dialysis (93.5% vs. 6.5%). Although arteriovenous fistula (AVF) is frequently chosen as the vascular access route for chronic hemodialysis; it has limitations including non-maturation. As maintenance of an AVF is much more costly than its creation, foreseeing maturation failure can lead to a wiser allocation of patients to AVF surgery or other alternatives, with potential for significant cost containment. Previous studies have some challenges: they used intraoperative and postoperative parameters (AVF blood flow, diameter, and depth) or parameters that are costly to collect (morphologic and functional vessels characteristics), and they used statistical analysis that puts restrictions on data. In this study, we aim to provide a data mining framework for predicting AVF non-maturation using routinely available preoperative parameters, such as serum metabolic values and inflammatory markers.

    Method

    We investigated the relationship of routinely available systemic inflammatory markers and baseline metabolic values in 114 end-stage renal disease patients (over 35 years of age undergoing their first radio-cephalic AVF access surgery at wrist level for chronic hemodialysis). In this study, for the first time to our knowledge, we applied predictive analytic tools such as Random Forest for retrospective analysis of prospectively collected data between 2011 and 2018.

    Results

    Our results showed that a combination of inflammatory markers and serum metabolic values can prognosticate AVF maturation outcomes with an accuracy of 0.723, by the 95% confidence interval of (0.715, 0.731) and AUC of 0.853. Also, a combination of inflammatory markers, including albumin, c-reactive protein, erythrocyte sedimentation rate, hemoglobin, lymphocytes, neutrophils, white blood cells, platelets, and red blood cell distribution width, can prognosticate AVF maturation outcomes with an accuracy of 0.674, by the 0.95 confidence interval of (0.665, 0.684) and AUC of 0.824.

    Conclusion

    Risk stratification of patients for AVF non-maturation before attempting the first AVF surgery may help prevent multiple surgical failures and costly endovascular interventions by allowing vascular surgeons to make an individualized choice of vascular access method for new patients.

    Keywords: Arteriovenous Fistula, maturation process outcomes, Inflammatory Markers, serum metabolic values, predictive analysis
  • Zahra Mohammadi Daniali, MohammadMehdi Sepehri *, Farzad Movahedi Sobhani, Mohammad Heidarzadeh
    Background and objectives

    The regionalization is a suitable approach to reduce the cost of health services and to increase the number of patients covered by special services. Since the establishment of the Neonatal Intensive Care Unit (NICU) needs expensive equipment and experts, it is critical to find the optimal number and location for NICU beds and referral networks.

    Methods

    The geographical access to NICU beds was investigated by collecting the annual demand and the distance between cities at first. The demand consisted of the number of neonates that were born under 32 weeks of gestational age or having less than 1500 gram birth weight in one province of Iran. Next, the location of the available hospital has defined on the map. A maximizing coverage model was developed to find the optimal location for NICUs by ArcMap software. Scenarios of reducing NICU centers were built to simulate real situations for policymakers. Coverage and average traveled distances were then calculated for each scenario. The results were compared with the natural journey of pregnant women and the available distribution of resources in the province.

    Results

    The results revealed that reducing the number of NICU centers has had no direct impact on average traveled distance. A comparison of the optimal result with the natural journey of pregnant women represented a long distance traveled. The data also showed that 64% of neonates were born outside of their residential cities, and 31% of them were born outside of their provinces, although the occupation rate of available NICU was less than 50% on average.

    Conclusion

    The effect of reducing NICU centers on total coverage and average transportation was studied in this paper. The proposed methodology with the objective of equity in access can be used as a referral model to other resource allocation cases in health care.

    Keywords: Regional Health Care, Location-allocation Problem, Equity of Access, Neonatal Intensive Care Unit, Resource distribution
  • Shirindokht Farhady, MohammadMehdi Sepehri*, AliAkbar Pourfathollah
    Background

    Mobile health or MHealth refers to the use of mobile phone in healthcare services to enhance the health level of people. Before using MHealth, it is necessary to study the effective factors in physicians’ adoption and acceptance of technology in the field of thalassemia 

    Methods

    This cross sectional study was conducted using the survey and correlation methods. The statistical population of the study consisted of hematologists who were selected using the convenience sampling method. In this study, 58 questionnaires along with structural equations modeling based on partial least squares were used. SPSS and SMART PLS2 were used for data analysis. P values less than 0.05 were considered as statistically significant.

    Results

    Based on the outcomes of the model from all theories, the coefficient of variation seems to be positive and the possibility of test is lower than 5%. The results indicated that all factors introduced in the proposed model are significantly effective in MHealth technology adoption.

    Conclusion

    In this study, using the inputs from hematologists in hospitals and clinics in Tehran, it was aimed to find the factors affecting the hematologists’ decision to use mobile health technology in reducing the complications of blood transfusion in patients with thalassemia who needed blood transfusion. Thus, plans were made determine to priorities and the existing conditions to implement this new system. Also, the strengths and weaknesses of each factor were measured to improve the weaker factors. UTAUT was used to determine the acceptance factors.  After reviewing the results, the use of this model is recommended to physicians.

    Keywords: Mobile Health, Unified Theory of Acceptance, Use of Technology (UTAUT), Thalassemia Patients
  • Ali Sanaei, Mohammad Mehdi Sepehri*
    Background

    Quality of Intensive care has got more attention in case of the high cost of healthcare and the potential for harm. Poor-quality care causes high cost and quality improvement initiatives in the ICU lead to an improvement in outcomes as well as a decrease in costs. One of the crucial tools that allow physicians and nurses to monitor change in a quality improvement effort is the development of an electronic database for data collection and reporting. The objective of Intensive Care Registries is to create a high-quality registry of patients through a collaboration of academic health centers performing uniform data collection with the purpose of improving the quality and accuracy of healthcare decisions and provide a data-driven clinical decision support system for critical care medicine.

    Methods

    This article reviews real-world data sources in healthcare and considers registry as the main tool to address health services and outcomes research questions in critical care, and briefly describes objective, inputs and outputs of intensive care registries. As it can be comprehended from library research, the combination of patient clinical care data, quality parameters, and ICU operating costs, integrated into an electronic database, provides a valuable tool for quality improvement and overall efficiency of offered care.

    Results

    Using Big Data effectively within ICUs for supporting clinical decision making can lead to predict numerous diseases and help to discover new patterns in healthcare. The ability to process multiple high-speed clinical data streams from multiple centers could dramatically improve both healthcare efficiency and patient outcomes.

    Conclusion

    To gain this goal, developing reliable and standardized health analytics platforms as well as quality improvement processes that translate analytical results into new clinical guidelines, is recommended.

    Keywords: Intensive care, Registry, Big data analytics, Quality improvement, Decision support systems
  • محسن قنواتی نژاد، مهدیه توکلی، محمد مهدی سپهری*
    زمینه و هدف

    امروزه با افزایش تقاضای درمان، بیماران با کمک اینترنت اشیا مراقبت و پایش می شوند. فناوری های پایش جسمی بیمار در محیط اینترنت اشیا شامل اندازه گیری ضربان قلب، فشارخون، قند خون و دیگر علائم حیاتی هستند. هدف مقاله، ارائه مدل خوشه بندی فناوری های مذکور با استفاده از تکنیک های داده کاوی است تا مناسب ترین فناوری، طبق نیازها و ویژگی های کاربر انتخاب شود.

    مواد و روش ها

    پژوهش حاضر، مروری و از منظر نتیجه کاربردی می باشد. داده ها شامل شش مشخصه منحصربه فرد 60 فناوری منتخب، شامل کاربرد، قیمت، نحوه اتصال، منبع تغذیه، مکان استفاده و نوع استفاده می باشد که از سایت های توسعه و تبلیغات فناوری ها و همچنین بررسی مقالات مرتبط استخراج شده است. روش تجزیه وتحلیل داده ها، تکنیک خوشه بندی و الگوریتم K-medoids است. هم چنین برای شناسایی موثرترین مشخصه ها، از الگوریتم جنگل تصادفی استفاده شده است.

    یافته ها

    مدل ارائه شده، با در نظر گرفتن مشخصه های انتخاب شده کاربر به عنوان ورودی، خوشه ای از فناوری ها را به عنوان خروجی مدل ارائه می دهد. مطابق با الگوریتم، داده ها در بهترین حالت در چهار دسته خوشه بندی شدند. شاخص سیلوئت برای چهار خوشه، مقدار 45/0 شده است که اعتبار مدل را نشان می دهد. با اجرای الگوریتم جنگل تصادفی، نوع کاربرد و پس از آن قیمت، بیشترین تاثیر را در خوشه بندی داشته اند.

    نتیجه گیری

    توسط مدل پیشنهادی پژوهش، بیماران یا کاربران می توانند مناسب ترین فناوری را بر حسب نوع بیماری و دیگر ویژگی های موثر همچون قیمت، بیابند و به این ترتیب با پایش جسمی درست و لحظه به لحظه، آمار پیشروی بیماری ها کمتر و پیشگیری آن ها بهتر انجام گیرد

    کلید واژگان: پایش بیمار, ابزار و نرم افزار, اینترنت اشیا در سلامت, خوشه بندی
    Mohssen Ghanavatinejad, Mahdieh Tavakoli, Mohamadmehdi Sepehri*
    Background

    with increasing demand for treatment, patients are monitored with help of Internet of Things(IOT). Patient's monitoring devices and technologies include heart rate measurement, blood pressure measurement, blood glucose and other vital signs. The purpose of study is to provide a model of clustering patient physical monitoring gadgets and apps in Healthcare Internet of Things (HIOT) environment using data mining techniques, so based on the needs and characteristics of the user, the more appropriate results of choosing technologies acquired.

    Materials and methods

    This study is a review and functional since its result. The data includes 6 unique features of 60 selected technologies including function, price, connectivity route, power supply, location and type of use that has been extracted from R&D and advertising sites of technologies and also relevant articles. data analysis method is clustering technique and K-medoids algorithm. to identify the most effective features, random forest algorithm has been used.

    Results

    the proposed clustering model takes into account 6 as inputs and clusters gadgets and apps in accordance with selected characteristics as the model outputs. clustering problem data is clustered in 4 categories.  Silhouette index is 0.45, which indicates the validity of the model. The type of application and then the price had the greatest impact on clustering.

    Conclusion

    By this model, patients or users can find the most appropriate technology based on the type of disease and other effective features, such as price. So with accurate physical and momentary monitoring, disease progression decrease and prevention of disease will improve.

    Keywords: Patient Monitoring, gadget, app, Healthcare Internet of Things (HIOT), Clustering
  • Samaneh Layeghian Javan, Mohammad Mehdi Sepehri *
    Background and Objectives

    Effective and continuous monitoring is one of the essential requirements of ICUs. In recent years, the advent of new technologies has led to the development of smart ICUs that automatically gather, store and analyze healthcare information. In this paper, we aim to design the information view of an IOT-based framework for smart ICUs to provide preventive and intelligent healthcare. In previous studies conducted to develop architectures for smart ICUs, data processing is done in a large centralized fashion by cloud computers. This approach may take a long time when dealing with a large amount of data. In this paper, we used the fog technique to bring some computation and storage resources to the edge of the network instead of relying on the cloud for everything.

    Methods

      A reference architecture model and new technologies such as IoT, cloud computing, fog computing and smart sensors were used to design the information view of a smart ICU architecture. This view consists of five layers of data acquisition, transfer, storage, process and presentation layer. The proposed framework gathers patients’ health-related data continuously and provides real-time analysis.

    Results

    In this paper, training the models, that took a long time, was performed in the cloud. Instead, classifying the new records, which took much less time, was performed in the fog. This greatly increased the speed of operations (2 ms vs 13590 ms). In addition, conducting calculations in the fog intensely reduced the transmission delays (8 ms vs 108 ms for only SPO2 variable).

    Conclusion

     New technologies were used to provide the information view of a smart ICU framework. Instead of relying solely on cloud, this paper uses fog technology to bring some computation and storage resources to the edge of the network. This greatly reduced the transmission latency and provided real-time analysis.

    Keywords: Smart ICU, IOT, framework, reference architecture
  • Tara Zamir, Mohammad Mehdi Sepehri *, Hassan Aghajani, Morteza Khakzar Bafruei, Toktam Khatibi
    Objective
    The high prevalence of cardiovascular diseases has caused many health problems in countries. Cardiac Rehabilitation Programs (CRPs) is a complementary therapy for Percutaneous Coronary Intervention (PCI) patients. However, PCI patients hardly attend CRPs. This study aims to decipher the reasons why PCI patients rarely participate in CRPs after PCI.
    Methods
    The parameters affecting the attendance of the patients at CRPs were identified by using the previous studies and opinions of experts. A questionnaire was designed based on the identified parameters and distributed among PCI patients who were referred to Tehran Heart Center Hospital.
    Results
    According to data mining approach, 184 samples were collected and classified with three algorithms (Decision Trees, k-Nearest Neighbor (kNN), and Naïve Bayes). The obtained results by decision trees were superior with the average accuracy of 82%, while kNN and Naïve Bayes obtained 81.2% and 78%, respectively. Results showed that lack of physician’s advice was the most significant reason for non-participation of PCI patients in CRPs (P< .0001). Other factors were family and friends’ encouragement, paying expenses by insurance, awareness of the benefits of the CRPs, and comorbidity, respectively.
    Conclusion
    Results of the best model can enhance the quality of services, promote health and prevent additional costs for patients.
    Keywords: Cardiovascular Disease, Percutaneous Coronary Intervention, Cardiac Rehabilitation Programs, Data Mining, Classification
  • Roghaye Khasha, Mohammad Mehdi Sepehri *, toktam khatibi
    Surgical suits allocate a large amount of expenses to hospitals; on the other hand, they constitute a huge part of hospital revenues. Patient flow optimization in a surgical suite by omitting or reducing bottlenecks which cause loss of time is one of the key solutions in minimizing the patients’ length of stay[1] (LOS) in the system, lowering the expenses, increasing efficiency, and also enhancing patients’ satisfaction. In this paper, an analytical model based on simulation aiming at patient flow optimization in the surgical suite has been proposed. To achieve such a goal, first, modeling of patients' workflow was created by using discrete-event simulation. Afterward, improvement scenarios were applied in the simulated model of surgical suites. Among defined scenarios, the combination scenario consisting of the omission of the waiting time between the patients’ entrance to the surgical suite and beginning of the admission procedure, being on time for the first operation, and adding a resource to the resources of the transportation and recovery room, was chosen as the best scenario. The results of the simulation indicate that performing this scenario can decrease patients’ LOS in such a system to 22.15%.
    Keywords: Simulation, discrete-event modeling, patient flow, hospital, surgical suite
  • Shirin Dohkt Farhadi, Mohammad Mehdi Sepehri *, Aliakbar Pourfathollah
    Background and purpose

    Thalassemia is the acute hereditary anemia and the most common hemoglobin disorder in the world. The main treatment for this disease is the persistent blood injection, but the injection of blood can have different complications. These complications affect the quality of life of patients and increase the risk of mortality. Moreover, it increases the use of healthcare services and hospital costs. Predicting the risk of complications before blood transfusion, more appropriate alternative treatment can be selected to prevent or reduce the complications. Moreover, identifying high-risk patients and following them after transfusion provides the possibility of timely interventions. So far, several studies have analyzed the effects of blood transfusion and the risk factors of these complications by statistical methods. However, few studies have attempted to predict these complications. In this study, the risk of post-transfusion complications in thalassemia patients is predicted using machine learning algorithms.

    Method

    The cross-sectional data were collected from 3489 cases in 12 thalassemia centers in Tehran province and 14 thalassemia centers in Mazandaran province in 2018. A set of different classification models including classic and deep learning techniques were trained and studied on this data set.

    Results

    The results showed that machine learning methods have good accuracy to predict the risk of post-transfusion complications. According to the results, the deep learning method has improved the results considerably in comparison to other models (precision=0.21, sensitivity=0.77, f1-score=0.33).

    Conclusion

    In this study, machine learning methods were used to predict the occurrence of post-transfusion complications in thalassemia patients. Finally, the deep learning method produced the best prediction results. Using this method,  of patients who will suffer complications are detected before transfusions. Appropriate alternative methods can be used for treating these patients in order to prevent or reduce transfusion complications.

    Keywords: Thalassemia, Blood transfusion, complication, prediction, Deep Learning
  • Pejman Shadpour, Rouhangiz Asadi, Mansoureh Naderi, Mohammad Mehdi Sepehri *
    Background and objectives
    Evaluation and assessment of hospitals Medical faculty performance plays a vital role in improving organizational performance, patient and client satisfaction, learner satisfaction and increase of the brand in hospitals. So faculty evaluation in terms of all aspects is essential in hospitals.
    Methods
    In this study, a multi-dimensional model from different perspectives (hospital management, research department, students and faculty) is provided for evaluation of faculty in hospitals. For this purpose, the indicators influencing assessment were identified and categorized in four dimensions: education, hospital management, research and clinical. Then, to prioritize and weight factors as well as prioritize the faculty, a multi-criteria decision-making model was developed and was solved using triangular FAHP approach.
    Results
    The results indicate that timely and active presence in the clinic on patient bedside, sending patient to other medical centers, private and non-governmental, with no scientific reason, active cooperation with implementing quality improvement plans of health care in hospitals and etc. have the highest priority and factors such as active cooperation with the hospital committees, quality of theses, physical presence in the office hours and etc. received the lowest score.
    Conclusions
    he results show that all three aspects of physicians' performance are important and should be considered in their evaluation And the fuzzy hierarchical analysis method has shown this very well.
    Keywords: evaluation, Faculty of Medicine, fuzzy analytical hierarchy process (FAHP) approach, Hospital
نمایش عناوین بیشتر...
فهرست مطالب این نویسنده: 50 عنوان
  • دکتر محمد مهدی سپهری
    سپهری، محمد مهدی
    رئیس دانشکده مهندسی صنایع و سیستم ها، دانشگاه تربیت مدرس
نویسندگان همکار
  • دکتر پژمان شادپور
    : 6
    شادپور، پژمان
    استاد تمام مرکز فوق تخصصی هاشمی نژاد، دانشگاه علوم پزشکی ایران
  • دکتر بختیار استادی
    : 4
    استادی، بختیار
    دانشیار مهندسی صنایع، دانشکده مهندسی صنایع و سیستم ها، دانشگاه تربیت مدرس
  • دکتر ناصر صفایی
    : 1
    صفایی، ناصر
    استادیار دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی
  • دکتر علی اکبر پورفتح الله
    : 1
    پورفتح الله، علی اکبر
    استادیار
  • دکتر کیانوش سوزنچی
    : 1
    سوزنچی، کیانوش
    استادیار معماری، دانشگاه تربیت مدرس
  • رضا اسدی
    : 1
    اسدی، رضا
بدانید!
  • این فهرست شامل مطالبی از ایشان است که در سایت مگیران نمایه شده و توسط نویسنده تایید شده‌است.
  • مگیران تنها مقالات مجلات ایرانی عضو خود را نمایه می‌کند. بدیهی است مقالات منتشر شده نگارنده/پژوهشگر در مجلات خارجی، همایش‌ها و مجلاتی که با مگیران همکاری ندارند در این فهرست نیامده‌است.
  • اسامی نویسندگان همکار در صورت عضویت در مگیران و تایید مقالات نمایش داده می شود.
درخواست پشتیبانی - گزارش اشکال